Thermal phenomena in quantum plasmonics

Plasmon nanolasers, also known as SPASERs, were suggested by Bergman and Stockman in 2003. Quantum plasmonics attract much attention in recent years due to the numerous potential applications in the plasmonics. We consider thermal effects in the metal nanoresonator immersed in the active, laser medium. The size of the resonator is much less than the wavelength. The plasmon field inside the nanoresonator operates as a quantum object. Due to the nanosize of the resonator, the internal plasmon electric field is about the atomic field even for few plasmon quants. The coupling between the plasmon field and plasmon resonator is anomalous strong. We develop the quantum dynamics of the plasmon field and show that the SPASER may be the subject of thermal instability. The loss in SPASER increases with increasing the temperature when the average number of the plasmons is maintained at the stationary level. Therefore, the heat generation increases with increasing the temperature. This positive feedback results in the thermal instability. When the energy, accumulated in the plasmon nanoresonator, exceeds the instability threshold the temperature increases exponentially. We find the increment of the temperature growth and lifetime as function of the loss in metal and the structure of the plasmon resonator. We consider how the thermal instability influences the luminescence and find how the lasing threshold is changed. The coherence of the light emitted by the plasmon laser is also considered. The thermal stability of the nanolaser is crucial for any practical application.

[1]  Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.

[2]  P. Guyot-Sionnest,et al.  Reduced damping of surface plasmons at low temperatures , 2009 .

[3]  R. Olmon,et al.  Broadband electrical permittivity of gold for plasmonics and nano-optics applications , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[4]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[5]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[6]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[7]  Jinhyoung Lee,et al.  Quantum plasmonics with a metal nanoparticle array , 2011, 1112.6329.

[8]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[9]  S. Huant,et al.  “Deterministic” quantum plasmonics. , 2010, Nano letters.

[10]  M. Kim,et al.  Quantum theory of surface-plasmon polariton scattering , 2010, 1002.1051.

[11]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[12]  Rupert F. Oulton,et al.  Surface plasmon lasers: sources of nanoscopic light , 2012 .

[13]  A. Sarychev,et al.  Allowable number of plasmons in nanoparticle , 2014 .

[14]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[15]  Marko Lonvcar,et al.  Enhanced single-photon emission from a diamond–silver aperture , 2011, 1105.4096.

[16]  M. S. Tame,et al.  Quantum Plasmonics , 2013 .

[17]  M Paternostro,et al.  Single-photon excitation of surface plasmon polaritons. , 2008, Physical review letters.

[18]  Andrey K. Sarychev,et al.  Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser , 2006, SPIE Optics + Photonics.

[19]  A. Roberts,et al.  Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire. , 2014, Optics express.

[20]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[21]  Jean-Jacques Greffet,et al.  Quantum theory of spontaneous and stimulated emission of surface plasmons , 2010, 1004.0135.

[22]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[23]  S. Huant,et al.  Quantum plasmonics: second-order coherence of surface plasmons launched by quantum emitters into a metallic film , 2012, 1205.2072.

[24]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[25]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[26]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[27]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[28]  R. Car,et al.  Thermal conductivity of crystalline quartz from classical simulations , 2004 .

[29]  Ulrich Hohenester,et al.  Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach , 2005 .

[30]  Brian M. Foley,et al.  Influence of interfacial properties on thermal transport at gold:silicon contacts , 2012 .

[31]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[32]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[33]  K. Kneipp,et al.  Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps , 2013 .

[34]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[35]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[36]  Ulrich Hohenester,et al.  Strong coupling between a metallic nanoparticle and a single molecule , 2008, 0802.1630.

[37]  O. A. Yeshchenko,et al.  Temperature dependence of the surface plasmon resonance in gold nanoparticles , 2013, 1303.3778.

[38]  Ravishankar Sundararaman,et al.  Theoretical predictions for hot-carrier generation from surface plasmon decay , 2014, Nature Communications.

[39]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[40]  Wayne Dickson,et al.  Low-temperature plasmonics of metallic nanostructures. , 2012, Nano letters.

[41]  J. M. Elson,et al.  Photon Interactions at a Rough Metal Surface , 1971 .

[42]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[43]  Edo Waks,et al.  Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter , 2010 .

[44]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[45]  B. Barwick,et al.  Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field , 2015, Nature Communications.

[46]  S. M. Wang,et al.  The interaction between quantum dots and coupled magnetic plasmon in coupled metamaterial , 2012 .

[47]  Wei Zhou,et al.  Plasmonic bowtie nanolaser arrays. , 2012, Nano letters.

[48]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[49]  Sergey S. Vergeles,et al.  Thermal instability in plasmonics , 2014, Photonics Asia.

[50]  Peter Nordlander,et al.  Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device , 2013, Nature Communications.

[51]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.