Estimation of Geomechanical Failure Parameters from Well Logs Using Artificial Intelligence Techniques

[1]  Shan Sung Liew,et al.  An optimized second order stochastic learning algorithm for neural network training , 2015, Neurocomputing.

[2]  Salaheldin Elkatatny,et al.  Development of a New Correlation for Bubble Point Pressure in Oil Reservoirs Using Artificial Intelligent Technique , 2018 .

[3]  Mohamed Mahmoud,et al.  New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network , 2017, Neural Computing and Applications.

[4]  Shahab D. Mohaghegh,et al.  A Methodological Approach for Reservoir Heterogeneity Characterization Using Artificial Neural Networks , 1994 .

[5]  Salaheldin Elkatatny,et al.  Real time prediction of drilling fluid rheological properties using Artificial Neural Networks visible mathematical model (white box) , 2016 .

[6]  A. Abdulraheem,et al.  Prediction of Rock Mechanical Parameters for Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques , 2009 .

[7]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[8]  Arash Shadravan,et al.  Uncertainty Analysis in Unconfined Rock Compressive Strength Prediction , 2010 .

[9]  Salaheldin Elkatatny,et al.  A Hybrid Artificial Intelligence Method to Predict Gas Solubility and Bubble Point Pressure , 2017 .

[10]  A. E. Schwartz Failure Of Rock In The Triaxial Shear Test , 1964 .

[11]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[12]  Hossein Kaydani,et al.  Neural Fuzzy System Development for the Prediction of Permeability From Wireline Data Based on Fuzzy Clustering , 2012 .

[13]  Masoud Nikravesh,et al.  Introduction: Field Applications of Intelligent Computing Techniques , 2001 .

[14]  Mohsen Rezaei,et al.  Lithofacies Prediction And Permeability Values Estimation From Conventional Well-logs Applying Fuzzy Logic - Case Study: Alwyn North Field , 2008 .

[15]  Howard L. Hartman,et al.  Hypothesis for the Mechanism of Rock Failure Under Impact , 1961 .

[16]  M. Zoback,et al.  Empirical relations between rock strength and physical properties in sedimentary rocks , 2006 .

[17]  Nader Dutta,et al.  Geopressure prediction using seismic data: Current status and the road ahead , 2002 .

[18]  Ş. Niculescu Artificial neural networks and genetic algorithms in QSAR , 2003 .

[19]  Salaheldin Elkatatny,et al.  Application of Artificial Intelligent Techniques to Determine Sonic Time from Well Logs , 2016 .

[20]  K. Asghari,et al.  Estimation of the Reservoir Permeability by Petrophysical Information Using Intelligent Systems , 2008 .

[21]  M. Reza Rezaee,et al.  Petrophysical data prediction from seismic attributes using committee fuzzy inference system , 2009, Comput. Geosci..

[22]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[23]  Pejman Tahmasebi,et al.  A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation , 2012, Comput. Geosci..

[24]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[25]  Salaheldin Elkatatny Determination the Rheological Properties of Invert Emulsion Based Mud on Real Time Using Artificial Neural Network , 2016 .

[26]  Byeong-Mook Chung,et al.  Neuro-fuzzy modeling and control for magnetic field of deflection yoke , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.