Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification

Interfacial engineering has been shown to play a vital role in boosting the performance of perovskite solar cells in the past few years. Here we demonstrate that caesium bromide (CsBr), as an interfacial modifier between the electron collection layer and the CH3NH3PbI3−xClx absorber layer, can effectively enhance the stability of planar heterojunction devices under ultra violet (UV) light soaking. Additionally, the device performance is improved due to the alleviated defects at the perovskite-titania heterojunction and enhanced electron extraction.

[1]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[2]  Yongfang Li,et al.  Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites , 2015 .

[3]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[4]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[5]  Xudong Guo,et al.  Interface engineering of perovskite solar cells with PEO for improved performance , 2015 .

[6]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[7]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[8]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[9]  Robert L. Jaffe,et al.  Pathways for solar photovoltaics , 2015 .

[10]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[11]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[12]  Enhanced electrical transparency by ultrathin LaAlO3 insertion at oxide metal/semiconductor heterointerfaces. , 2015, Nano letters.

[13]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[14]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[15]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[16]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[17]  Qi Chen,et al.  The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. , 2015, Physical chemistry chemical physics : PCCP.

[18]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[19]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[20]  A. Petrozza,et al.  Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. , 2014, Journal of the American Chemical Society.

[21]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[22]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[23]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[24]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[25]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[26]  Jin Young Kim,et al.  Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .

[27]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[28]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[29]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[30]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[31]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[32]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[33]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[34]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[35]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[36]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[37]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[38]  Guangda Niu,et al.  Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance , 2013 .

[39]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[40]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[41]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[42]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[43]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[44]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[45]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[46]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[47]  Michelle V. Buchanan,et al.  Addressing Grand Energy Challenges through Advanced Materials , 2005 .

[48]  Paul B. Weisz,et al.  Basic Choices and Constraints on Long-Term Energy Supplies , 2004 .

[49]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[50]  David Cahen,et al.  Electron Energetics at Surfaces and Interfaces: Concepts and Experiments , 2003 .

[51]  Y. Ishii,et al.  Low-energy excitation in CsPbX3 (X=Cl, Br) , 2002 .

[52]  D. Cahen,et al.  Electrochemical, solid state, photochemical and technological aspects of photoelectrochemical energy converters , 1976, Nature.