Languages Recognized with Unbounded Error by Quantum Finite Automata

We prove the following facts about the language recognition power of Kondacs-Watrous quantum finite automata in the unbounded error setting: One-way automata of this kind recognize all and only the stochastic languages. When the tape head is allowed two-way (or even "1.5-way") movement, more languages become recognizable. This leads to the conclusion that quantum Turing machines are more powerful than probabilistic Turing machines when restricted to constant space bounds.

[1]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[2]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[3]  John Watrous,et al.  Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..

[4]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[5]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[6]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[7]  YA. YA. KANEPS,et al.  Stochasticity of the languages acceptable by two-way finite probabilistic automata , 1991 .

[8]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[9]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[10]  Massimo Pica Ciamarra Quantum Reversibility and a New Model of Quantum Automaton , 2001, FCT.

[11]  Mark Mercer,et al.  Applications of Algebraic Automata Theory to Quantum Finite Automata , 2007 .

[12]  Marek Karpinski,et al.  Lower Space Bounds for Randomized Computation , 1994, ICALP.

[13]  Azaria Paz,et al.  Introduction to probabilistic automata (Computer science and applied mathematics) , 1971 .

[14]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[15]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[16]  Ansis Rosmanis,et al.  Multi-letter Reversible and Quantum Finite Automata , 2007, Developments in Language Theory.

[17]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[18]  Mark Mercer Lower Bounds for Generalized Quantum Finite Automata , 2008, LATA.

[19]  Marco Carpentieri,et al.  Regular Languages Accepted by Quantum Automata , 2001, Inf. Comput..

[20]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[21]  A. C. Cem Say,et al.  Language Recognition by Generalized Quantum Finite Automata with Unbounded Error , 2009, ArXiv.

[22]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[23]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[24]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[25]  Paavo Turakainen,et al.  Generalized automata and stochastic languages , 1969 .

[26]  Kathrin Paschen Quantum finite automata using ancilla qubits , 2000 .

[27]  Farid M. Ablayev,et al.  Classical Simulation Complexity of Quantum Machines , 2003, FCT.

[28]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[29]  Namio Honda,et al.  A Context-Free Language Which is not Acceptable by a Probabilistic Automaton , 1971, Inf. Control..

[30]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..