3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method

Abstract In this paper we combine a stochastic 3D microstructure model of a fiber based gas diffusion layer of polymer electrolyte fuel cells with a Lattice Boltzmann model for fluid transport. We focus on a simple approach of compressing the planar oriented virtual geometry of paper-type gas diffusion layer from Toray. Material parameters – permeability and tortuosity – are calculated from simulation of one phase, one component gas flow in stochastic geometries. We analyze the statistical spread of simulation results on ensembles of the virtual geometry, both uncompressed and compressed. The influence of the compression is discussed with regard to the Kozeny–Carman equation. The effective transport properties calculated from transport simulations in compressed gas diffusion layers agree well with a trend based on the Kozeny–Carman equation.

[1]  Rui Chen,et al.  A Numerical Study of Structural Change and Anisotropic Permeability in Compressed Carbon Cloth Polymer Electrolyte Fuel Cell Gas Diffusion Layers , 2011 .

[2]  Dominique d'Humières,et al.  Multireflection boundary conditions for lattice Boltzmann models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Dominique d'Humières,et al.  Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to "magic" collision numbers , 2009, Comput. Math. Appl..

[4]  Yosuke Matsukuma,et al.  Evaluation of Two-Phase Condition and Mass Transfer in GDL With Pore Network Model , 2009 .

[5]  Y. Sohn,et al.  Gas-diffusion layer's structural anisotropy induced localized instability of nafion membrane in polymer electrolyte fuel cell , 2012 .

[6]  Volker Schmidt,et al.  Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells , 2010 .

[7]  Rui Chen,et al.  3D reconstruction of a gas diffusion layer and a microporous layer , 2010 .

[8]  Werner Lehnert,et al.  3D modeling of an HT-PEFC stack using reformate gas , 2012 .

[9]  D. Stolten,et al.  3D Modeling of One and Two Component Gas Flow in Fibrous Microstructures in Fuel Cells by Using the Lattice-Boltzmann Method , 2013 .

[10]  Werner Lehnert,et al.  3D modeling of a 200 cm2 HT-PEFC short stack , 2012 .

[11]  Werner Lehnert,et al.  Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography , 2007 .

[12]  S. Kær,et al.  The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell , 2012 .

[13]  Volker Schmidt,et al.  Stochastic Modeling of Fuel‐Cell Components , 2012 .

[14]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[15]  M. M. Tomadakis,et al.  Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results , 2005 .

[16]  B. Sundén,et al.  Analysis of multi-phase transport phenomena with catalyst reactions in polymer electrolyte membrane , 2011 .

[17]  P. Mukherjee,et al.  Numerical Modeling of Two-Phase Behavior in the PEFC Gas Diffusion Layer , 2010 .

[18]  Antti I. Koponen,et al.  Tortuous flow in porous media. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Rui Chen,et al.  An Improved MRT Lattice Boltzmann Model for Calculating Anisotropic Permeability of Compressed and Uncompressed Carbon Cloth Gas Diffusion Layers Based on X-Ray Computed Micro-Tomography , 2012 .

[20]  M. Krafczyk,et al.  An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations , 2006 .

[21]  W. Lehnert,et al.  Stochastic Aspects of Mass Transport in Gas Diffusion Layers , 2014, Transport in Porous Media.

[22]  J. Gostick Random Pore Network Modeling of GDLs Using Voronoi and Delaunay Tessellations , 2011 .

[23]  Rui Chen,et al.  Nanotomography based study of gas diffusion layers , 2010 .

[24]  Investigation of Carbon Fiber Gas Diffusion Layers by Means of Synchrotron X-ray Tomography , 2011 .

[25]  Chaoyang Wang,et al.  Modeling liquid water transport in gas diffusion layers by topologically equivalent pore network , 2010 .

[26]  F. Marone,et al.  Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy , 2009 .

[27]  S. Hirai,et al.  Investigation on the effect of microstructure of proton exchange membrane fuel cell porous layers on liquid water behavior by soft X-ray radiography , 2011 .

[28]  Rui Chen,et al.  Modeling Fluid Flow in the Gas Diffusion Layers in PEMFC Using the Multiple Relaxation‐time Lattice Boltzmann Method , 2012 .

[29]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[30]  Liang Hao,et al.  Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method , 2010 .

[31]  Lowe,et al.  Numerical evaluation of the permeability and the Kozeny constant for two types of porous media. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Wilson K. S. Chiu,et al.  Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode , 2007 .

[33]  F. Marone,et al.  Determination of Local GDL Saturation on the Pore Level by In Situ Synchrotron Based X-ray Tomographic Microscopy , 2010 .

[34]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Volker Schmidt,et al.  Stochastic 3D Modeling of the GDL Structure in PEMFCs Based on Thin Section Detection , 2008 .

[36]  M. Kaviany,et al.  Principles of Heat Transfer , 2001 .

[37]  H. Ju,et al.  Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell , 2012 .

[38]  Chaoyang Wang,et al.  Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach , 2007 .

[39]  Marco Stampanoni,et al.  Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy , 2011 .

[40]  F. Büchi,et al.  Saturation Dependent Effective Transport Properties of PEFC Gas Diffusion Layers , 2012 .

[41]  Jens Harting,et al.  Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations , 2008, 0811.4593.

[42]  Zhuqian Zhang,et al.  Evaluating breakthrough pressure in gas diffusion layers of proton exchange membrane fuel cells , 2010 .

[43]  J. W. Van Zee,et al.  The effects of compression and gas diffusion layers on the performance of a PEM fuel cell , 1999 .

[44]  S. V. Sotirchos,et al.  Ordinary and transition regime diffusion in random fiber structures , 1993 .

[45]  Yun Wang,et al.  Modeling of Polymer Electrolyte Membrane Fuel‐Cell Components , 2012 .

[46]  P. Haridoss,et al.  Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design , 2011 .

[47]  Werner Lehnert,et al.  Diffusion media materials and characterisation , 2010 .

[48]  M. Pourkashanian,et al.  Prediction of the Permeability of Fibrous Porous Media Using the Lattice Boltzmann Method in Conjuction with Coarse Numerical Lattices , 2010 .

[49]  M. Fowler,et al.  In-plane and through-plane gas permeability of carbon fiber electrode backing layers , 2006 .

[50]  Volker Schmidt,et al.  Stochastic 3D modeling of fiber-based materials , 2012 .

[51]  Y. Liu,et al.  Multiscale Modeling of Single-Phase Multicomponent Transport in the Cathode Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell , 2010 .

[52]  Reza S. Yassar,et al.  Microstructure of Gas Diffusion Layers for PEM Fuel Cells , 2012 .

[53]  Chao-Yang Wang,et al.  Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell , 2007 .

[54]  P. Pollard,et al.  Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling , 2013 .

[55]  S. Gottesfeld,et al.  POLYMER ELECTROLYTE FUEL CELLS. , 1997 .

[56]  Rui Chen,et al.  3D visualization and characterization of nano structured materials , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[57]  Chao-Yang Wang,et al.  Measurement of relative permeability of fuel cell diffusion media , 2010 .

[58]  Kazuhiko Suga,et al.  An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model , 2007 .

[59]  Mark Pritzker,et al.  Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells , 2006 .

[60]  I. Manke,et al.  Local Structural Characteristics of Pore Space in GDLs of PEM Fuel Cells Based on Geometric 3D Graphs , 2009 .

[61]  Rui Chen,et al.  Multiscale Simulation of Single-Phase Multicomponent Transport in the Cathode Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell , 2010 .

[62]  Andreas Wiegmann,et al.  Design of acoustic trim based on geometric modeling and flow simulation for non-woven , 2006 .

[63]  Liang Hao,et al.  Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers , 2009 .

[64]  Sheng Chen,et al.  A simple lattice Boltzmann scheme for combustion simulation , 2008, Comput. Math. Appl..

[65]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .