Constitutive modelling of snow as a cohesive-granular material

Snow material is an example of a geomaterial whose micro-structure plays a significant role in its overall constitutive behaviour. A snow sample can be regarded at the microscopic level as a cohesive granular assembly; the behaviour of ice bonds at the interface of each pair of grains in contact, which has a substantial influence on the overall behaviour, can be expressed in a straightforward manner. This paper derives the constitutive behaviour of the snowpack on the macroscopic level from a microscopic-scale description, taking into account a statistical description of the fabrics. In this approach, the location of each particle does not play a role, but the probability of a grain bond existing in a given direction is investigated. Modelling the creation or the failure of contacts in given directions makes it possible to analyse how the probability density of having contacts in these directions evolves. As an example, the relevance of this constitutive approach is examined using the standard creeping and triaxial tests.

[1]  Jean-Pierre Bardet,et al.  Introduction to Computational Granular Mechanics , 1998 .

[2]  Ching S. Chang,et al.  Micromechanical modelling of cemented sands under low amplitude oscillations , 1990 .

[3]  Malcolm Mellor,et al.  Mechanical performance of snow under loading: By Masaharu Fukue, Tokai University Press, 1979, 136 pages, 6,000 yen , 1981 .

[4]  P. R. Kry The Relationship between the Visco-Elastic and Structural Properties of Fine-Grained Snow , 1975 .

[5]  Farhang Radjai,et al.  BIMODAL CHARACTER OF STRESS TRANSMISSION IN GRANULAR PACKINGS , 1998 .

[6]  Vincent de Montmollin Shear Test on Snow Explained by Fast Metamorphism , 1982, Journal of Glaciology.

[7]  P. R. Kry Quantitative Stereological Analysis of Grain Bonds in Snow , 1975, Journal of Glaciology.

[8]  P. Duval,et al.  Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies : Ann Geophys V3, N2, March–April 1985, P207–224 , 1985 .

[9]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[10]  F Nicot,et al.  Interaction between a snow mantel and a flexible structure: a new method to design avalanche nets , 2002 .

[11]  R. L. Brown,et al.  An internal state variable approach to constitutive theories for granular materials with snow as an example , 1988 .

[12]  P. Bartelt,et al.  A computational procedure for instationary temperature-dependent snow creep , 1999 .

[13]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[14]  Ching S. Chang,et al.  Estimates of Elastic Modulus for Media of Randomly Packed Granules , 1994 .

[15]  George L. Blaisdell,et al.  Snow Mechanics: Review of the State of Knowledge and Applications, , 1997 .

[16]  Frédéric-Victor Donzé,et al.  Numerical simulations of impacts using a discrete element method , 1998 .

[17]  Pere C. Prat,et al.  Microplane Model for Brittle-Plastic Material: I. Theory , 1988 .

[18]  Olivier Gagliardini,et al.  Flow simulation of a firn-covered cold glacier , 1997 .

[19]  Ching S. Chang Micromechanical modeling of deformation and failure for granulates with frictional contacts , 1993 .

[20]  Gaël Combe,et al.  Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path , 1997 .

[21]  P. A. Cundall,et al.  NUMERICAL MODELLING OF DISCONTINUA , 1992 .

[22]  O. Castelnau Modélisation du comportement mécanique de la glace polycristalline par une approche auto-cohérente : application au développement de textures dans les glaces des calottes polaires , 1996 .

[23]  K. Hutter,et al.  Induced anisotropy in large ice shields: theory and its homogenization , 1998 .

[24]  F. Sidoroff,et al.  Homogenization for granular materials , 1995 .

[25]  François Nicot,et al.  From constitutive modelling of a snow cover to the design of flexible protective structures Part II––Some numerical aspects , 2004 .

[26]  R. Armstrong An analysis of compressive strain in adjacent temperature-gradient and equi-temperature layers in a natural snow cover , 1980 .

[27]  O. Gagliardini,et al.  Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal , 1999 .

[28]  P. Pimienta Etude du comportement mécanique des glaces polycristallines aux faibles contraintes : applications aux glaces des calottes polaires , 1987 .

[29]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[30]  Farhang Radjai,et al.  Contact forces in a granular packing. , 1999, Chaos.

[31]  Marie Chaze,et al.  Change of scale in granular materials , 2000 .

[32]  N. Azuma A flow law for anisotropic ice and its application to ice sheets , 1994 .

[33]  François Nicot,et al.  Modelling of a snowpack in interaction with a flexible structure using a coupled Lagrangian‐discrete approach , 2003 .

[34]  An Incremental Formulation of Constitutive Equations for Deposited Snow , 1980 .

[35]  W. Lawrence The Acoustic Emission Response of Snow , 1980 .

[36]  L. Lliboutry Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheological parameters inferred from homogenization , 1993 .

[37]  Henri Bader,et al.  The physics and mechanics of snow as a material , 1962 .

[38]  J. Duva,et al.  Analysis of consolidation of reinforced materials by power-law creep , 1994 .