On a Directionally Adjusted Metropolis-Hastings Algorithm
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] Walter R. Gilks,et al. Adaptive Direction Sampling , 1994 .
[3] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[4] Anne Lohrli. Chapman and Hall , 1985 .
[5] M. Bédard. Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234 , 2008 .
[6] J. Geweke,et al. Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .
[7] Anthony C. Davison,et al. Applied Asymptotics: Case Studies in Small-Sample Statistics , 2007 .
[8] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[9] Herman K. van Dijk,et al. ADAPTIVE RADIAL-BASED DIRECTION SAMPLING: Some exible and robust Monte Carlo integration methods Econometric Institute Report EI 2003-22 , 2003 .
[10] A. Brazzale. Practical small-sample parametric inference , 2000 .
[11] M. B'edard. Weak convergence of Metropolis algorithms for non-i.i.d. target distributions , 2007, 0710.3684.
[12] D. Fraser,et al. Higher Accuracy for Bayesian and Frequentist Inference: Large Sample Theory for Small Sample Likelihood , 2007, 0801.3751.
[13] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[14] Charles S. Bos,et al. Adaptive Radial-based Direction Sampling: Some Flexible and Robust Monte Carlo Integration Methods , 2004 .
[15] D. Cox,et al. Applied Statistics: Principles and Examples , 1982 .
[16] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .