Elucidating anionic oxygen activity in lithium-rich layered oxides

[1]  Biao Li,et al.  Tuning the Reversibility of Oxygen Redox in Lithium-Rich Layered Oxides , 2017, Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries.

[2]  Muratahan Aykol,et al.  Material design of high-capacity Li-rich layered-oxide electrodes: Li2MnO3 and beyond , 2017 .

[3]  H. Gasteiger,et al.  Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. , 2017, The journal of physical chemistry letters.

[4]  C. Erk,et al.  Operando Monitoring of Early Ni-mediated Surface Reconstruction in Layered Lithiated Ni–Co–Mn Oxides , 2017 .

[5]  K. Amine,et al.  Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries , 2017 .

[6]  Chenglong Zhao,et al.  Review on anionic redox for high-capacity lithium- and sodium-ion batteries , 2017 .

[7]  Zahid Hussain,et al.  High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. , 2017, The Review of scientific instruments.

[8]  V. Yashchuk,et al.  Modular soft x-ray spectrometer for applications in energy sciences and quantum materials. , 2017, The Review of scientific instruments.

[9]  Y. Meng,et al.  Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries , 2017 .

[10]  Marca M. Doeff,et al.  A review of Ni-based layered oxides for rechargeable Li-ion batteries , 2017 .

[11]  F. Pan,et al.  Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy , 2016 .

[12]  P. Bruce,et al.  Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2. , 2016, Journal of the American Chemical Society.

[13]  Rahul Malik,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[14]  C. Delmas Battery materials: Operating through oxygen. , 2016, Nature chemistry.

[15]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[16]  Yan Chen,et al.  Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries , 2016, Nature Communications.

[17]  Y. Meng,et al.  Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries , 2016 .

[18]  Y. Ukyo,et al.  Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy , 2016 .

[19]  Yoshio Kobayashi,et al.  Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode , 2016, Nature Communications.

[20]  Jin Ma,et al.  Understanding the Stability for Li‐Rich Layered Oxide Li2RuO3 Cathode , 2016 .

[21]  Jin Ma,et al.  Lithium‐Ion Batteries: Understanding the Stability for Li‐Rich Layered Oxide Li2RuO3 Cathode (Adv. Funct. Mater. 9/2016) , 2016 .

[22]  A. Grimaud,et al.  Anionic redox processes for electrochemical devices. , 2016, Nature materials.

[23]  D. A. D. Corte,et al.  Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries , 2016 .

[24]  D. A. D. Corte,et al.  Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries , 2016 .

[25]  Yang-Kook Sun,et al.  Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives , 2016 .

[26]  J. Tarascon,et al.  Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.

[27]  Jung-Hyun Kim,et al.  Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi0.5Mn1.5O4 Electrodes , 2015 .

[28]  Guoying Chen,et al.  Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides , 2015, Nature Communications.

[29]  D. Sokaras,et al.  Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. , 2015, Physical chemistry chemical physics : PCCP.

[30]  J. Tarascon,et al.  Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6. , 2015, Journal of the American Chemical Society.

[31]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[32]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[33]  K Ramesha,et al.  Origin of voltage decay in high-capacity layered oxide electrodes. , 2015, Nature materials.

[34]  James C. Knight,et al.  Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides , 2015 .

[35]  J. Tarascon,et al.  Reversible Li-Intercalation through Oxygen Reactivity in Li-Rich Li-Fe-Te Oxide Materials , 2015 .

[36]  B. Hwang,et al.  Understanding the Role of Ni in Stabilizing the Lithium-Rich High-Capacity Cathode Material Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5) , 2014 .

[37]  Erik J. Berg,et al.  Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries , 2014 .

[38]  M. Chi,et al.  Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. , 2014, Physical chemistry chemical physics : PCCP.

[39]  J. Goodenough,et al.  Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K-edge X-ray Absorption Spectroscopy , 2014 .

[40]  B. Hwang,et al.  Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). , 2014, Journal of the American Chemical Society.

[41]  Z. Hussain,et al.  Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy , 2013, Nature Communications.

[42]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[43]  François Weill,et al.  Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[44]  Marie-Liesse Doublet,et al.  High Performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding , 2013 .

[45]  C. Delmas,et al.  Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2 , 2013 .

[46]  Bing-Joe Hwang,et al.  Soft X-ray Absorption Spectroscopic and Raman Studies on Li1.2Ni0.2Mn0.6O2 for Lithium-Ion Batteries , 2012 .

[47]  K. Kang,et al.  Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries , 2012 .

[48]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[49]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[50]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[51]  T. Schmitt,et al.  Resonant inelastic scattering spectra of free molecules with vibrational resolution. , 2010, Physical review letters.

[52]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[53]  Ying Shirley Meng,et al.  Electrochemical and Structural Study of the Layered, “Li-Excess” Lithium-Ion Battery Electrode Material Li[Li1/9Ni1/3Mn5/9]O2 , 2009 .

[54]  Michael M. Thackeray,et al.  Enhancing the rate capability of high capacity xLi2MnO3 · (1 -x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment , 2009 .

[55]  De-cheng Li,et al.  Synthesis and electrochemistry of cubic rocksalt Li–Ni–Ti–O compounds in the phase diagram of LiNiO2–LiTiO2–Li[Li1/3Ti2/3]O2 , 2008 .

[56]  Shin Fujitani,et al.  Development of Lithium-Ion Batteries with a LiCoO2 Cathode Toward High Capacity by Elevating Charging Potential , 2008 .

[57]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[58]  Christopher S. Johnson,et al.  Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C , 2007 .

[59]  K. Kakurai,et al.  New-Type Phase Transition of Li2RuO3 with Honeycomb Structure , 2006, cond-mat/0612026.

[60]  T. Devereaux,et al.  Inelastic light scattering from correlated electrons , 2006, cond-mat/0607554.

[61]  M. Rønning,et al.  Synthesis and CO2 Capture Properties of Nanocrystalline Lithium Zirconate , 2006 .

[62]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[63]  Arumugam Manthiram,et al.  High Capacity, Surface-Modified Layered Li [ Li ( 1 − x ) ∕ 3Mn ( 2 − x ) ∕ 3Nix ∕ 3Cox ∕ 3 ] O2 Cathodes with Low Irreversible Capacity Loss , 2006 .

[64]  Xiao‐Qing Yang,et al.  Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[65]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[66]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[67]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[68]  A. Maignan,et al.  Valence state of Ru at the Mn sites in Pr0.5Sr0.5MnO3 , 2003 .

[69]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[70]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[71]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[72]  Akio Kotani,et al.  Resonant inelastic x-ray scattering spectra for electrons in solids , 2001 .

[73]  Jinghua Guo,et al.  Tunable-excitation soft X-ray fluorescence spectroscopy of high-Tc superconductors: an inequivalent-site seeing story , 2000 .

[74]  Guo,et al.  Resonant x-ray emission spectroscopy of molecular oxygen. , 1996, Physical review letters.

[75]  Robert C. Wolpert,et al.  A Review of the , 1985 .