A Fourth Order Hermitian Box-Scheme with Fast Solver for the Poisson Problem in a Square

A new fourth order box-scheme for the Poisson problem in a square with Dirichlet boundary conditions is introduced, extending the approach in Croisille (Computing 78:329–353, 2006). The design is based on a “hermitian box” approach, combining the approximation of the gradient by the fourth order hermitian derivative, with a conservative discrete formulation on boxes of length 2h. The goal is twofold: first to show that fourth order accuracy is obtained both for the unknown and the gradient; second, to describe a fast direct algorithm, based on the Sherman-Morrison formula and the Fast Sine Transform. Several numerical results in a square are given, indicating an asymptotic O(N2log 2(N)) computing complexity.

[1]  Louis W. Ehrlich,et al.  Solving the Biharmonic Equation as Coupled Finite Difference Equations , 1971 .

[2]  Jean-Pierre Croisille,et al.  A Fast Direct Solver for the Biharmonic Problem in a Rectangular Grid , 2008, SIAM J. Sci. Comput..

[3]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[4]  Toshifumi Matsuoka,et al.  Wave propagation simulation using the CIP method of characteristic equations , 2008 .

[5]  Jun Zhang,et al.  An explicit fourth‐order compact finite difference scheme for three‐dimensional convection–diffusion equation , 1998 .

[6]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[7]  W. Hackbusch Elliptic Differential Equations , 1992 .

[8]  Yin Wang,et al.  Sixth order compact scheme combined with multigrid method and extrapolation technique for 2D poisson equation , 2009, J. Comput. Phys..

[9]  J.-P. Croisille,et al.  A Hermitian Box-scheme for One-dimensional Elliptic Equations – Application to Problems with High Contrasts in the Ellipticity , 2006, Computing.

[10]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[11]  Murli M. Gupta,et al.  Comparison of Second- and Fourth-Order Discretizations for Multigrid Poisson Solvers , 1997 .

[12]  Ronald F. Boisvert,et al.  A fourth-order-accurate Fourier method for the Helmholtz equation in three dimensions , 1987, TOMS.

[13]  Ronald F. Boisvert,et al.  Families of High Order Accurate Discretizations of Some Elliptic Problems , 1981 .

[14]  Graeme Fairweather,et al.  Fast direct solvers for piecewise Hermite bicubic orthogonal spline collocation equations , 1992 .

[15]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[16]  Ronald F. Boisvert,et al.  Algorithms for Special Tridiagonal Systems , 1991, SIAM J. Sci. Comput..

[17]  Gene H. Golub,et al.  A Fast Poisson Solver for the Finite Difference Solution of the Incompressible Navier-Stokes Equations , 1998, SIAM J. Sci. Comput..

[18]  Amir Averbuch,et al.  A Fast Spectral Subtractional Solver for Elliptic Equations , 2004, J. Sci. Comput..

[19]  P. Bjørstad Fast Numerical Solution of the Biharmonic Dirichlet Problem on Rectangles , 1983 .

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[22]  John R. Rice,et al.  Solving elliptic problems using ELLPACK , 1985, Springer series in computational mathematics.

[23]  Tapan K. Sengupta,et al.  Analysis of central and upwind compact schemes , 2003 .

[24]  H. E. Salzer,et al.  Table errata: The numerical treatment of differential equations (third edition, Springer, Berlin, 1960) by L. Collatz , 1972 .

[25]  Amir Averbuch,et al.  A Hierarchical 3-D Direct Helmholtz Solver by Domain Decomposition and Modified Fourier Method , 2005, SIAM J. Sci. Comput..

[26]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[27]  K. Remington,et al.  Fourier Methods for Piecewise Hermite Bicubic Or- Thogonal Spline Collocation , 1994 .

[28]  L. Collatz The numerical treatment of differential equations , 1961 .

[29]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[30]  Paul N. Swarztrauber,et al.  FFT algorithms for vector computers , 1984, Parallel Comput..

[31]  Gennaro Coppola,et al.  Generalization of the Spline Interpolation Based on the Principle of the Compact Schemes , 2002, J. Sci. Comput..

[32]  H. B. Keller A New Difference Scheme for Parabolic Problems , 1971 .

[33]  Jean-Pierre Croisille,et al.  Navier-Stokes Equations in Planar Domains , 2013 .

[34]  Graeme Fairweather,et al.  Matrix decomposition algorithms for elliptic boundary value problems: a survey , 2011, Numerical Algorithms.

[35]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[36]  B. Gustafsson High Order Difference Methods for Time Dependent PDE , 2008 .

[37]  B. L. Buzbee,et al.  The Direct Solution of the Biharmonic Equation on Rectangular Regions and the Poisson Equation on Irregular Regions , 1974 .

[38]  P. Londrillo Adaptive grid-based gas-dynamics and Poisson solvers for gravitating systems , 2004 .

[39]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[40]  Scott E. Sherer,et al.  High-order compact finite-difference methods on general overset grids , 2005 .

[41]  Gene H. Golub,et al.  On direct methods for solving Poisson's equation , 1970, Milestones in Matrix Computation.