Terahertz absorption-saturation and emission from electron-doped germanium quantum wells.

We study radiative relaxation at terahertz frequencies in n-type Ge/SiGe quantum wells, optically pumped with a terahertz free electron laser. Two wells coupled through a tunneling barrier are designed to operate as a three-level laser system with non-equilibrium population generated by optical pumping around the 1→3 intersubband transition at 10 THz. The non-equilibrium subband population dynamics are studied by absorption-saturation measurements and compared to a numerical model. In the emission spectroscopy experiment, we observed a photoluminescence peak at 4 THz, which can be attributed to the 3→2 intersubband transition with possible contribution from the 2→1 intersubband transition. These results represent a step towards silicon-based integrated terahertz emitters.

[1]  G. Capellini,et al.  Electron Population Dynamics in Optically Pumped Asymmetric Coupled Ge/SiGe Quantum Wells: Experiment and Models , 2019, Photonics.

[2]  G. Capellini,et al.  Control of Electron-State Coupling in Asymmetric Ge/Si−Ge Quantum Wells , 2019, Physical Review Applied.

[3]  G. Capellini,et al.  Room temperature operation of n-type Ge/SiGe terahertz quantum cascade lasers predicted by non-equilibrium Green's functions , 2018, Applied Physics Letters.

[4]  Leonardo Viti,et al.  Terahertz saturable absorbers from liquid phase exfoliation of graphite , 2017, Nature Communications.

[5]  Michal Lipson,et al.  Low-loss silicon platform for broadband mid-infrared photonics , 2017, 1703.03517.

[6]  S. Winnerl,et al.  Electron Dynamics in Silicon-Germanium Terahertz Quantum Fountain Structures , 2016 .

[7]  Juliette Mangeney,et al.  Generating ultrafast pulses of light from quantum cascade lasers , 2015 .

[8]  G. Scalari,et al.  Quantum cascade lasers: 20 years of challenges. , 2015, Optics express.

[9]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[10]  G. Capellini,et al.  Physical mechanisms of intersubband-absorption linewidth broadening in s-Ge/SiGe quantum wells , 2014 .

[11]  Jurgen Michel,et al.  Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared , 2014 .

[12]  M. Lagally,et al.  Strained-germanium nanostructures for infrared photonics. , 2014, ACS nano.

[13]  G. Capellini,et al.  Combined effect of electron and lattice temperatures on the long intersubband relaxation times of Ge/Si x Ge 1-x quantum wells , 2014 .

[14]  Mathieu Carras,et al.  Low loss SiGe graded index waveguides for mid-IR applications. , 2014, Optics express.

[15]  V. T. Dinh,et al.  (Invited) Germanium/Silicon Heterostructures for Terahertz Emission , 2013 .

[16]  H. Hübers,et al.  The physical principles of terahertz silicon lasers based on intracenter transitions , 2013 .

[17]  G. Capellini,et al.  Narrow intersubband transitions in n-type Ge/SiGe multi-quantum wells: control of the terahertz absorption energy trough the temperature dependent depolarization shift , 2012, Nanotechnology.

[18]  G. Capellini,et al.  Modeling picosecond electron dynamics of pump-probe intersubband spectroscopy in n-type Ge/SiGe quantum wells , 2012 .

[19]  V. T. Dinh,et al.  Germanium/Silicon Heterostructures for Terahertz Emission , 2012 .

[20]  G. Capellini,et al.  Long intersubband relaxation times in n-type germanium quantum wells , 2011 .

[21]  E. Müller,et al.  Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells , 2011 .

[22]  L. Vivien,et al.  Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth , 2011 .

[23]  G. Capellini,et al.  Near- and far-infrared absorption and electronic structure of Ge-SiGe multiple quantum wells , 2010 .

[24]  Z. Ikonic,et al.  Design of Ge–SiGe Quantum-Confined Stark Effect Electroabsorption Heterostructures for CMOS Compatible Photonics , 2010, Journal of Lightwave Technology.

[25]  D. Paul The progress towards terahertz quantum cascade lasers on silicon substrates , 2010 .

[26]  D. Turchinovich,et al.  Semiconductor Saturable Absorbers for Ultrafast THz Signals , 2010 .

[27]  Dmitry Turchinovich,et al.  Semiconductor saturable absorbers for ultrafast terahertz signals , 2010, 1003.1942.

[28]  R. Kelsall,et al.  Si/SiGe quantum cascade superlattice designs for terahertz emission , 2010 .

[29]  G. Capellini,et al.  Conduction band intersubband transitions in Ge/SiGe quantum wells , 2009 .

[30]  A. M. Stoneham,et al.  Silicon as a model ion trap: Time domain measurements of donor Rydberg states , 2008, Proceedings of the National Academy of Sciences.

[31]  Roberto Paiella,et al.  Design of n-type silicon-based quantum cascade lasers for terahertz light emission , 2007 .

[32]  J. Faist,et al.  Intersubband Raman laser from GaInAs∕AlInAs double quantum wells , 2007 .

[33]  G. Grosso,et al.  Conduction intersubband transitions at normal incidence in Si1−xGex quantum well devices , 2007, Nanotechnology.

[34]  K. Driscoll,et al.  Silicon-based injection lasers using electronic intersubband transitions in the L valleys , 2006 .

[35]  S. Winnerl,et al.  Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAs∕AlAsSb quantum well structures , 2006 .

[36]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[37]  Valery N. Shastin,et al.  Terahertz lasers based on germanium and silicon , 2005 .

[38]  Federico Capasso,et al.  Raman injection laser , 2005, Nature.

[39]  D. Paul Si/SiGe heterostructures: from material and physics to devices and circuits , 2004 .

[40]  Ursula Keller,et al.  Optical characterization of semiconductor saturable absorbers , 2004 .

[41]  Giovanni Isella,et al.  Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices , 2004 .

[42]  W. R. Tribe,et al.  Interwell intersubband electroluminescence from Si/SiGe quantum cascade emitters , 2003 .

[43]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[44]  G. Dehlinger,et al.  Intersubband electroluminescence from silicon-based quantum cascade structures. , 2000, Science.

[45]  Erich Gornik,et al.  High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 μm with 2.5% tunability , 1999 .

[46]  Mattias Beck,et al.  Far-infrared (λ=88 μm) electroluminescence in a quantum cascade structure , 1998 .

[47]  Pinaki Mazumder,et al.  Resonant tunneling diodes: models and properties , 1998, Proc. IEEE.

[48]  J. Leburton,et al.  Mid-infrared intersubband emission from optically pumped asymmetric coupled quantum wells , 1997 .

[49]  Richard A. Soref,et al.  Comparative analysis of optically pumped intersubband lasers and intersubband Raman oscillators , 1995 .

[50]  J. Faist,et al.  The Quantum Cascade Laser , 1994 .

[51]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[52]  A. Perera,et al.  Estimates of infrared intersubband emission and its angular dependence in GaAs/AlGaAs multiquantum well structures , 1991 .

[53]  Allen,et al.  Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling. , 1989, Physical review letters.

[54]  Francois H. Julien,et al.  Optical saturation of intersubband absorption in GaAs‐AlxGa1−xAs quantum wells , 1988 .

[55]  Leroy L. Chang,et al.  Effects of Quantum States on the Photocurrent in a , 1975 .

[56]  Jing Zhang,et al.  Toward Silicon-Based Lasers for Terahertz Sources , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[57]  J. Leburton,et al.  Intersubband mid-infrared emission in optically pumped quantum wells , 1996 .