Quasi-universal Gaussian Jets: A Unified Picture for Gamma-Ray Bursts and X-Ray Flashes

An observed correlation Ep ∝ (Eiso)1/2 extending from gamma-ray bursts (GRBs) to X-ray flashes (XRFs) poses problems both for a power-law universal jet model, in which the energy per solid angle decreases as the inverse square of the angle with respect to the jet axis, and for a conical jet model with a uniform energy density within the jet beam and a sharp energy cutoff at the jet edge. Here we show that the current GRB-XRF prompt emission/afterglow data can be understood in terms of a picture in which the GRB-XRF jets are quasi-universal and structured, with a Gaussian-like or similar structure, i.e., one where the jet has a characteristic angle, with a mild variation of energy inside and a rapid (e.g., exponential) decrease of energy outside of it. A Monte Carlo simulation shows that the current data is compatible with such a quasi-universal Gaussian jet with a typical opening angle of 5.7 deg and with a standard jet energy of about log(Ej/1 erg) = 51.1 ± 0.3. According to this model, the true-to-observed number ratio of the whole GRB-XRF population is about 14 with the current instrumental sensitivity.

[1]  K. Sheth,et al.  Millimeter Observations of GRB 030329: Continued Evidence for a Two-Component Jet , 2003 .

[2]  Robert S. Mallozzi,et al.  Cosmological versus Intrinsic: The Correlation between Intensity and the Peak of the νFν Spectrum of Gamma-Ray Bursts , 1999, astro-ph/9908191.

[3]  D. Lamb,et al.  Cosmic Explosions in Three Dimensions: Gamma-Ray Bursts as a laboratory for the study of Type Ic supernovae , 2003, astro-ph/0309463.

[4]  S. R. Kulkarni,et al.  BEAMING IN GAMMA-RAY BURSTS: EVIDENCE FOR A STANDARD ENERGY RESERVOIR , 2001 .

[5]  Jonathan Granot,et al.  THE EVOLUTION OF A STRUCTURED RELATIVISTIC JET AND GAMMA-RAY BURST AFTERGLOW LIGHT CURVES , 2003 .

[6]  J. Rhoads The Dynamics and Light Curves of Beamed Gamma-Ray Burst Afterglows , 1999, astro-ph/9903399.

[7]  Zhi-Yun Li,et al.  Radio supernova sn 1998bw and its relation to grb 980425 , 1999, astro-ph/9903483.

[8]  Bing Zhang,et al.  GRB 021004: Reverse Shock Emission , 2003 .

[9]  S. R. Kulkarni,et al.  A Standard Kinetic Energy Reservoir in Gamma-Ray Burst Afterglows , 2003 .

[10]  D. Lazzati,et al.  Afterglow light curves, viewing angle and the jet structure of γ-ray bursts , 2002 .

[11]  P. Soffitta,et al.  Optical and Radio Observations of the Afterglow from GRB 990510: Evidence for a Jet , 1999 .

[12]  E. Waxman,et al.  On the Energy of Gamma-Ray Bursts , 1999, astro-ph/9912214.

[13]  S. R. Kulkarni,et al.  A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine-driven Supernovae , 2003, astro-ph/0307228.

[14]  S. R. Kulkarni,et al.  The Enigmatic Radio Afterglow of GRB 991216 , 2000 .

[15]  Heather Ting Ma,et al.  Rebrightening of XRF 030723: Further evidence for a two-component jet in a gamma-ray burst , 2003, astro-ph/0309360.

[16]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[17]  M. Rees,et al.  Events in the life of a cocoon surrounding a light, collapsar jet , 2002, astro-ph/0205108.

[18]  D. M. Wei,et al.  GRB afterglow light curves from uniform and non-uniform jets , 2003 .

[19]  Bing Zhang,et al.  GAMMA-RAY BURST BEAMING: A UNIVERSAL CONFIGURATION WITH A STANDARD ENERGY RESERVOIR? , 2002 .

[20]  Ryo Yamazaki,et al.  Cosmological X-Ray Flashes in the Off-Axis Jet Model , 2003 .

[21]  P. Kumar,et al.  Off-Axis Afterglow Emission from Jetted Gamma-Ray Bursts , 2002 .

[22]  V. Lipunov,et al.  Gamma-ray bursts as standard-energy explosions , 2001 .

[23]  Jay D. Salmonson Perspective on Afterglows: Numerically Computed Views, Light Curves, and the Analysis of Homogeneous and Structured Jets with Lateral Expansion , 2003 .

[24]  M. Rees,et al.  Poynting Jets from Black Holes and Cosmological Gamma-Ray Bursts , 1996, astro-ph/9609065.

[25]  Jonathan Granot,et al.  Constraining the Structure of Gamma-Ray Burst Jets through the Afterglow Light Curves , 2003 .

[26]  S. Woosley,et al.  Gamma-Ray Bursts and Type Ic Supernova SN 1998bw , 1998, astro-ph/9806299.

[27]  Xinyu Dai,et al.  On the Structure of Quasi-universal Jets for Gamma-Ray Bursts , 2003, astro-ph/0310431.

[28]  S. Djorgovski,et al.  The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123 , 1999, astro-ph/9902272.

[29]  Bing Zhang,et al.  An Analysis of Gamma-Ray Burst Spectral Break Models , 2002 .

[30]  M. Feroci,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[31]  A. Panaitescu,et al.  The Effect of Angular Structure of Gamma-Ray Burst Outflows on the Afterglow Emission , 2003, astro-ph/0301032.

[32]  D. Yonetoku,et al.  An off-axis jet model for GRB 980425 and low-energy gamma-ray bursts , 2003, astro-ph/0306615.

[33]  A. Panaitescu,et al.  Fundamental Physical Parameters of Collimated Gamma-Ray Burst Afterglows , 2001 .

[34]  S. R. Kulkarni,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003 .

[35]  Caltech,et al.  Relativistic Jets in Collapsars , 2002, astro-ph/0207436.

[36]  E. Berger,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.