INVERSION FOR APPLIED GEOPHYSICS: A TUTORIAL

Throughout this book there are numerous cases where geophysics has been used to help solve practical environmental, geotechnical and exploration problems. The typical scenario is first to identify the physical property that is diagnostic of the sought geologic structure or buried object, for example density, seismic velocity, electrical conductivity, or magnetic susceptibility. The appropriate geophysical survey is then designed and field data are acquired and plotted. In some cases the information needed to solve the problem may be obtained directly from these plots, but in most cases more information about the subsurface is required. As an example, consider the magnetic field anomaly map presented in Figure 2. The existence of a buried object, and also approximate horizontal locations, can be inferred directly from that image. The map however, presents no information about the depth of the object or details regarding its shape. To obtain that information the data need to be inverted to generate a 3D subsurface distribution of the magnetic material.

[1]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[2]  A. Dey,et al.  Resistivity modelling for arbitrarily shaped two-dimensional structures , 1979 .

[3]  J. Scales,et al.  Global optimization methods for multimodal inverse problems , 1992 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[6]  R. Parker Understanding Inverse Theory , 1977 .

[7]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[8]  Robert G. Ellis,et al.  The pole-pole 3-D Dc-resistivity inverse problem: a conjugategradient approach , 1994 .

[9]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[10]  M. M. Siddiqui,et al.  Robust Estimation of Location , 1967 .

[11]  P. Weidelt The inverse problem of geomagnetic induction , 1973 .

[12]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[13]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[14]  R. Snieder,et al.  Identifying sets of acceptable solutions to non-linear, geophysical inverse problems which have complicated misfit functions , 1995 .

[15]  J. R. Wait Overvoltage research and geophysical applications , 1959 .

[16]  Douglas W. Oldenburg,et al.  Uxo Discrimination And Identification Using Magnetometry , 2002 .

[17]  P. McGillivray,et al.  Forward modeling and inversion of DC resistivity and MMR data , 1992 .

[18]  N. Christensen Electromagnetic Subsurface Imaging. A Case for an Adaptive Born Approximation , 1997 .

[19]  3-D Inversion of DC Resistivity Data Using an L-curve Criterion , 1999 .

[20]  A. Dey,et al.  Resistivity modeling for arbitrarily shaped three-dimensional structures , 1979 .

[21]  S. Treitel,et al.  A REVIEW OF LEAST-SQUARES INVERSION AND ITS APPLICATION TO GEOPHYSICAL PROBLEMS* , 1984 .

[22]  Malcolm Sambridge,et al.  Hypocentre location: genetic algorithms incorporating problem- specific information , 1994 .

[23]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[24]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[25]  M. Wysession,et al.  An Introduction to Seismology, Earthquakes, and Earth Structure , 2002 .

[26]  D. Oldenburg,et al.  Inversion of induced polarization data , 1994 .

[27]  G. Wahba Spline models for observational data , 1990 .

[28]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[29]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[30]  D. Oldenburg,et al.  A Discrimination Algorithm for UXO Using Time Domain Electromagnetics , 2001 .

[31]  Andrew J. Mutton,et al.  The application of geophysics during evaluation of the Century zinc deposit , 2000 .

[32]  D. Oldenburg,et al.  Incorporating geological dip information into geophysical inversions , 2000 .

[33]  Imaging of transient electromagnetic soundings using a scaling approximate fréchet derivative , 1996 .

[34]  C. Lanczos,et al.  Linear Systems in Self-Ad Joint Form , 1958 .

[35]  G. Keller Principles of induced polarization for geophysical exploration , 1978 .

[36]  P. Stark Inference in infinite-dimensional inverse problems: Discretization and duality , 1992 .

[37]  P. Gill,et al.  Solving Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming , 1991 .

[38]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[39]  Stephen K. Park,et al.  Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes , 1991 .

[40]  Partha S. Routh,et al.  Cost effectiveness of geophysical inversions in mineral exploration: Applications at San Nicolas , 2001 .

[41]  D. Oldenburg,et al.  Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method , 2003 .

[42]  E. Haber,et al.  Learning regularization functionals—a supervised training approach , 2003 .

[43]  Yutaka Sasaki,et al.  3-D resistivity inversion using the finite-element method , 1994 .

[44]  P. Vallabh Sharma Rapid computation of magnetic anomalies and demagnetization effects caused by bodies of arbitrary shape , 1966 .

[45]  Gregory A. Newman,et al.  Image appraisal for 2-D and 3-D electromagnetic inversion , 2000 .

[46]  H. Seigel Mathematical formulation and type curves for induced polarization , 1959 .

[47]  D. Oldenburg,et al.  Estimating depth of investigation in DC resistivity and IP surveys , 1999 .

[48]  J. Scales,et al.  Robust methods in inverse theory , 1988 .

[49]  D. Oldenburg,et al.  Inversion of geophysical data over a copper gold porphyry deposit; a case history for Mt. Milligan , 1997 .

[50]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[51]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[52]  Douglas W. Oldenburg,et al.  3-D inversion of magnetic data , 1996 .

[53]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble , 1999 .

[54]  D. Oldenburg,et al.  Magnetotelluric appraisal using simulated annealing , 1991 .

[55]  R. E. Langer,et al.  An inverse problem in differential equations , 1933 .

[56]  R. Parker Geophysical Inverse Theory , 1994 .

[57]  D. Oldenburg An introduction to linear inverse theory , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[58]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[59]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[60]  G. Golub,et al.  Generalized cross-validation for large scale problems , 1997 .

[61]  E. Haber,et al.  A GCV based method for nonlinear ill-posed problems , 2000 .

[62]  Douglas W. Oldenburg,et al.  Automatic Estimation of the Trade-off Parameter In Nonlinear Inverse Problems Using the GCV And L-curve Criteria , 2000 .

[63]  D. Oldenburg Funnel functions in linear and nonlinear appraisal , 1983 .

[64]  Philip E. Gill,et al.  Practical optimization , 1981 .

[65]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[66]  A.,et al.  Inverse Problems = Quest for Information , 2022 .

[67]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[68]  D. Oldenburg,et al.  Inversion of Induced-Polarization Data , 1993 .

[69]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[70]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[71]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[72]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .