Multigrid methods for a parameter dependent problem in primal variables

Summary. In this paper we consider multigrid methods for the parameter dependent problem of nearly incompressible materials. We construct and analyze multilevel-projection algorithms, which can be applied to the mixed as well as to the equivalent, non-conforming finite element scheme in primal variables. For proper norms, we prove that the smoothing property and the approximation property hold with constants that are independent of the small parameter. Thus we obtain robust and optimal convergence rates for the W-cycle and the variable V-cycle multigrid methods. The numerical results pretty well conform the robustness and optimality of the multigrid methods proposed.

[1]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[2]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[3]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[4]  D. Braess Stability of saddle point problems with penalty , 1996 .

[5]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[6]  Stefan Turek Multigrid Techniques for Simple Discretely Divergence-free Finite Element Spaces , 1994 .

[7]  Susanne C. Brenner,et al.  Multigrid methods for parameter dependent problems , 1996 .

[8]  Susanne C. Brenner,et al.  A nonconforming multigrid method for the stationary Stokes equations , 1990 .

[9]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[10]  J. Lions,et al.  Sur Une Classe D’Espaces D’Interpolation , 1964 .

[11]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[12]  R. Verfürth A Multilevel Algorithm for Mixed Problems , 1984 .

[13]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[14]  Dietrich Braess,et al.  A multigrid method for a parameter dependent problem in solid mechanics , 1990 .

[15]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[16]  Z. Haung,et al.  A multi-grid algorithm for mixed problems with penalty , 1990 .

[17]  R. S. Falk Nonconforming finite element methods for the equations of linear elasticity , 1991 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .