The FastMap Algorithm for Shortest Path Computations

We present a new preprocessing algorithm for embedding the nodes of a given edge-weighted undirected graph into a Euclidean space. The Euclidean distance between any two nodes in this space approximates the length of the shortest path between them in the given graph. Later, at runtime, a shortest path between any two nodes can be computed with A* search using the Euclidean distances as heuristic. Our preprocessing algorithm, called FastMap, is inspired by the data mining algorithm of the same name and runs in near-linear time. Hence, FastMap is orders of magnitude faster than competing approaches that produce a Euclidean embedding using Semidefinite Programming. FastMap also produces admissible and consistent heuristics and therefore guarantees the generation of shortest paths. Moreover, FastMap applies to general undirected graphs for which many traditional heuristics, such as the Manhattan Distance heuristic, are not well defined. Empirically, we demonstrate that A* search using the FastMap heuristic is competitive with A* search using other state-of-the-art heuristics, such as the Differential heuristic.

[1]  Yngvi Björnsson,et al.  Improved Heuristics for Optimal Path-finding on Game Maps , 2006, AIIDE.

[2]  Nathan R. Sturtevant,et al.  Benchmarks for Grid-Based Pathfinding , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[3]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[4]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[5]  Peter Sanders,et al.  Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks , 2008, WEA.

[6]  Nathan R. Sturtevant,et al.  The compressed differential heuristic , 2017, AI Commun..

[7]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[8]  Joseph Y. Halpern,et al.  Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence , 2014, AAAI 2014.

[9]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[10]  Sven Koenig,et al.  Identifying Hierarchies for Fast Optimal Search , 2014, SOCS.

[11]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[12]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[13]  UWS Academic Portal Symbolic Reasoning for Hearthstone Stiegler, Andreas; Dahal, K.; Maucher, J.; Livingstone, D. Published in: IEEE Transactions on Computational Intelligence and AI in Games , 2017 .

[14]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[15]  Nathan R. Sturtevant,et al.  Partial Pathfinding Using Map Abstraction and Refinement , 2005, AAAI.

[16]  Nathan R. Sturtevant,et al.  Memory-Based Heuristics for Explicit State Spaces , 2009, IJCAI.

[17]  Robert C. Holte,et al.  Searching With Abstractions: A Unifying Framework and New High-Performance Algorithm 1 , 1994 .

[18]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[19]  Ben Strasser,et al.  Compressing Optimal Paths with Run Length Encoding , 2015, J. Artif. Intell. Res..

[20]  Marvin A. Carlson Editor , 2015 .

[21]  Tristan Cazenave,et al.  Optimizations of data structures, heuristics and algorithms for path-finding on maps , 2006, 2006 IEEE Symposium on Computational Intelligence and Games.

[22]  Adi Botea,et al.  Near Optimal Hierarchical Path-Finding , 2004, J. Game Dev..

[23]  Wheeler Ruml,et al.  Faster Optimal and Suboptimal Hierarchical Search , 2011, SOCS.

[24]  Nathan R. Sturtevant,et al.  Portal-Based True-Distance Heuristics for Path Finding , 2010, SOCS.

[25]  Jeffrey S. Rosenschein,et al.  Search Space Reduction Using Swamp Hierarchies , 2010, SOCS.

[26]  Nathan R. Sturtevant,et al.  Euclidean Heuristic Optimization , 2011, AAAI.

[27]  Adi Botea,et al.  Path Planning with Compressed All-Pairs Shortest Paths Data , 2013, ICAPS.

[28]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[29]  Steven Rabin,et al.  Game AI Pro 2: Collected Wisdom of Game AI Professionals , 2013 .

[30]  Sabine Storandt Contraction Hierarchies on Grid Graphs , 2013, KI.

[31]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[32]  Steven M. LaValle,et al.  Planning algorithms , 2006 .