Decrypting the growth of anodic TiO2 nanotube layers in eco-friendly fluoride-free nitrate-based electrolyte for enhanced photocatalytic degradation of organic pollutants

[1]  Daolun Feng,et al.  Surface Modification of TiO2 Nanotubes Prepared by Porous Titanium Anodization via Hydrothermal Reaction: A Method for Synthesis High-Efficiency Adsorbents of Recovering Sr Ions. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[2]  Martin Motola,et al.  Fluoride-free synthesis of anodic TiO2 nanotube layers: a promising environmentally friendly method for efficient photocatalysts. , 2022, Nanoscale.

[3]  Martin Motola,et al.  Contribution of photocatalytic and Fenton-based processes in nanotwin structured anodic TiO2 nanotube layers modified by Ce and V. , 2022, Dalton Transactions.

[4]  E. Lichtfouse,et al.  Worldwide cases of water pollution by emerging contaminants: a review , 2022, Environmental Chemistry Letters.

[5]  J. Macák,et al.  Scaling up anodic TiO2 nanotube layers – Influence of the nanotube layer thickness on the photocatalytic degradation of hexane and benzene , 2022, Applied Materials Today.

[6]  Martin Motola,et al.  Emerging Investigator Series Anodization of large area Ti: versatile material for caffeine photodegradation and hydrogen production , 2022, Catalysis Science & Technology.

[7]  S. Sirivithayapakorn,et al.  Application of TiO2 nanotubes as photocatalysts for decolorization of synthetic dye wastewater , 2021, Water Resources and Industry.

[8]  Ye Song,et al.  Debunking the formation mechanism of nanopores in four kinds of electrolytes without fluoride ion , 2021, Electrochemistry Communications.

[9]  Xufei Zhu,et al.  Growth of porous anodic TiO2 in silver nitrate solution without fluoride: Evidence against the field-assisted dissolution reactions of fluoride ions , 2021 .

[10]  Martin Motola,et al.  Ce ion surface-modified TiO2 aerogel powders: a comprehensive study of their excellent photocatalytic efficiency in organic pollutant removal , 2021 .

[11]  T. Clyne,et al.  Optimization of the microstructure of TiO2 photocatalytic surfaces created by Plasma Electrolytic Oxidation of titanium substrates , 2021 .

[12]  Junwu Zhu,et al.  Debunking the effect of water content on anodizing current: Evidence against the traditional dissolution theory , 2020 .

[13]  J. Macák,et al.  Intrinsic properties of high-aspect ratio single- and double-wall anodic TiO2 nanotube layers annealed at different temperatures , 2020 .

[14]  Lizhi Sun,et al.  Efficient Photocatalytic Degradation of Pharmaceutical Pollutants Using Plasma‐Treated g‐C 3 N 4 /TiO 2 , 2020 .

[15]  J. Macák,et al.  Ti3+ doped anodic single-wall TiO2 nanotubes as highly efficient photocatalyst , 2020, Electrochimica Acta.

[16]  N. Ohtsu,et al.  Anomalous anodic layer growth on titanium occurring in electrolyte comprising nitrate and water , 2019, Surface and Coatings Technology.

[17]  Ye Song,et al.  On the Interfacial Adhesion between TiO2 Nanotube Array Layer and Ti Substrate. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[18]  M. Pawar,et al.  A Brief Overview of TiO2 Photocatalyst for Organic Dye Remediation: Case Study of Reaction Mechanisms Involved in Ce-TiO2 Photocatalysts System , 2018, Journal of Nanomaterials.

[19]  B. Praveen,et al.  Structural modulation and band gap optimisation of electrochemically anodised TiO2 nanotubes , 2018, Materials Science in Semiconductor Processing.

[20]  P. Alvarez,et al.  CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension , 2018 .

[21]  Yan Sun,et al.  Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation , 2017 .

[22]  F. Wang,et al.  Effect of ethylene glycol concentration on the morphology and catalytic properties of TiO2 nanotubes , 2017 .

[23]  M. Ghoranneviss,et al.  Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method , 2017 .

[24]  P. Drogui,et al.  TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat , 2016 .

[25]  E. Sánchez,et al.  Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes , 2016 .

[26]  U. K. Mudali,et al.  A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications , 2015, Journal of Bio- and Tribo-Corrosion.

[27]  F. Zhang,et al.  Effect of Anodization Parameters on Morphology and Photocatalysis Properties of TiO2 Nanotube Arrays , 2015 .

[28]  C. Sousa,et al.  The cyclic nature of porosity in anodic TiO2 nanotube arrays , 2015 .

[29]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[30]  P. Schmuki,et al.  One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical reviews.

[31]  P. Acevedo‐Peña,et al.  Relation between Morphology and Photoelectrochemical Performance of TiO2 Nanotubes Arrays Grown in Ethylene Glycol/Water☆ , 2014 .

[32]  C. Bowen,et al.  A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes , 2013 .

[33]  Soojin Park,et al.  TiO2 photocatalyst for water treatment applications , 2013 .

[34]  U. Chaudhary,et al.  Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating , 2013, Journal of Thermal Spray Technology.

[35]  T. Homma,et al.  Photocurrent Conversion in Anodized TiO2 Nanotube Arrays: Effect of the Water Content in Anodizing Solutions , 2013 .

[36]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[37]  T. Lim,et al.  Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. , 2011, Journal of hazardous materials.

[38]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[39]  James R F Elphick,et al.  Chronic toxicity of chloride to freshwater species: Effects of hardness and implications for water quality guidelines , 2011, Environmental toxicology and chemistry.

[40]  Hongbing Yu,et al.  Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. , 2010, Journal of hazardous materials.

[41]  A. Durán,et al.  Photocatalytic properties in aqueous solution of porous TiO2-anatase films prepared by sol–gel process , 2010 .

[42]  J. Nowotny,et al.  Electronic and optical properties of anatase TiO2 nanotubes , 2010 .

[43]  Patrik Schmuki,et al.  Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes , 2010 .

[44]  Ye Song,et al.  Electronic currents and the formation of nanopores in porous anodic alumina , 2009, Nanotechnology.

[45]  Imam Bakhsh Solangi,et al.  Removal of fluoride from aqueous environment by modified Amberlite resin. , 2009, Journal of hazardous materials.

[46]  K. Hebert,et al.  The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. , 2009, Nature materials.

[47]  Hai-chao Liang,et al.  Effects of structure of anodic TiO(2) nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. , 2009, Journal of hazardous materials.

[48]  Y. Liu,et al.  TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance , 2009 .

[49]  P. Schmuki,et al.  Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology , 2009, Nanotechnology.

[50]  P. Schmuki,et al.  Self-organized Anodic TiO2-nanotubes in Fluoride Free Electrolytes , 2008 .

[51]  T. Devine,et al.  Titania nanotube formation in chloride and bromide containing electrolytes , 2008 .

[52]  A. Murphy Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting , 2007 .

[53]  J. Macák,et al.  Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes , 2007 .

[54]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[55]  L. Qin,et al.  Reduction in the electronic band gap of titanium oxide nanotubes , 2007 .

[56]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[57]  G. Thompson,et al.  A flow model of porous anodic film growth on aluminium , 2006 .

[58]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[59]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[60]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[61]  Markus Flury,et al.  Bromide in the Natural Environment: Occurrence and Toxicity , 1993 .

[62]  J. Albella,et al.  A theory of avalanche breakdown during anodic oxidation , 1987 .

[63]  E. H. Andrews,et al.  Oxide morphology and adhesive bonding on titanium surfaces , 1984 .