Missions to Mars: Characterization of Mars analogue rocks for the International Space Analogue Rockstore (ISAR)

Instruments for surface missions to extraterrestrial bodies should be cross-calibrated using a common suite of relevant materials. Such work is necessary to improve instrument performance and aids in the interpretation of in-situ measurements. At the CNRS campus in Orleans, the Observatoire des Sciences de l'Univers en region Centre (OSUC) has created a collection of well-characterised rocks and minerals for testing and calibrating instruments to be flown in space missions. The characteristics of the analogue materials are documented in an accompanying online database. In view of the recent and upcoming rover missions to Mars (NASA's 2011 Mars Science Laboratory (MSL) and ESA/Roscosmos' 2018 ExoMars), we are concentrating initially on materials of direct relevance to the red planet. The initial collection consists of 15 well-studied rock and mineral samples, including a variety of basalts (ultramafic, weathered, silicified, primitive), sediments (volcanic sands, chert, and a banded iron formation -BIF-), and the phyllosilicate nontronite (a clay). All the samples were characterised petrographically, petrologically, and geochemically using the types of analyses likely to be performed during in-situ missions, in particular ExoMars: hand specimen description; optical microscopy; mineralogical analysis by XRD, Raman and IR spectrometry; iron phase analysis by Mossbauer spectroscopy (MBS), elemental analysis by Energy-Dispersive X-ray spectroscopy (EDX), microprobe, Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Mass Spectrometry (ICP-MS); and reduced carbon analysis by Raman spectrometry.

[1]  Ashwin R. Vasavada,et al.  Mars science laboratory , 2013 .

[2]  J. Michalski,et al.  Deep crustal carbonate rocks exposed by meteor impact on Mars , 2010 .

[3]  Frances Westall,et al.  Volcaniclastic habitats for early life on Earth and Mars : A case study from 3.5 Ga-old rocks from the Pilbara, Australia , 2011 .

[4]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[5]  Fernando Rull,et al.  Raman spectroscopy goes to Mars , 2006 .

[6]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[7]  J. Michalski,et al.  Mineralogical constraints on the high-silica martian surface component observed by TES , 2005 .

[8]  Harry Y. McSween,et al.  Identification of quartzofeldspathic materials on Mars , 2004 .

[9]  Doris Breuer,et al.  Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites , 2010 .

[10]  C P McKay,et al.  A coupled soil-atmosphere model of H2O2 on Mars. , 1994, Icarus.

[11]  M. Skidmore,et al.  Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway) , 2011 .

[12]  L. Borg,et al.  Trace Element and 6142Nd Systematics in the Nakhlite MIL 03346 and the Orthopyroxenite ALH 84001: Implications for the Martian Mantle , 2006 .

[13]  Donald R. Lowe,et al.  Photosynthetic microbial mats in the 3,416-Myr-old ocean , 2004, Nature.

[14]  J. W. Holt,et al.  The construction of Chasma Boreale on Mars , 2010, Nature.

[15]  James W. Head,et al.  Geologic history of Mars , 2010 .

[16]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[17]  L E Orgel,et al.  The origin of life--a review of facts and speculations. , 1998, Trends in biochemical sciences.

[18]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[19]  N. Arndt,et al.  Intrusion and Crystallization of a Spinifex-Textured Komatiite Sill in Dundonald Township, Ontario , 2004 .

[20]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[21]  D. Nelson,et al.  Stratigraphic continuity and early deformation of the central part of the Coppin Gap Greenstone Belt, Pilbara, Western Australia , 2006 .

[22]  J. Bandfield,et al.  Geology of quartz and hydrated silica‐bearing deposits near Antoniadi Crater, Mars , 2012 .

[23]  J. Papike,et al.  Silicate mineralogy of martian meteorites , 2009 .

[24]  C. Stoker,et al.  Organic degradation under simulated Martian conditions. , 1997, Journal of geophysical research.

[25]  J. Rouzaud,et al.  The 3.466 Ga "Kitty's Gap Chert," an early Archean microbial ecosystem , 2006 .

[26]  Gerhard Kminek,et al.  The effect of ionizing radiation on the preservation of amino acids on Mars , 2006 .

[27]  W. Griffin,et al.  A primitive alkali basaltic stratovolcano and associated eruptive centres, Northwestern Spitsbergen: Volcanology and tectonic significance , 1989 .

[28]  Bernard H. Foing,et al.  Lunar and Planetary Science Conference , 2013 .

[29]  B. Ehlmann,et al.  Simulating weathering of basalt on Mars and Earth by thermal cycling , 2010 .

[30]  S. D. Vries Early Archaean sedimentary basins: depositional environment and hydrothermal systems : , 1999 .

[31]  B. Ehlmann,et al.  Magmatic precipitation as a possible origin of Noachian clays on Mars , 2012 .

[32]  D. Ming,et al.  Evidence for Calcium Carbonate at the Mars Phoenix Landing Site , 2009, Science.

[33]  A. Meunier,et al.  The Fe-Rich Clay Microsystems in Basalt-Komatiite Lavas: Importance of Fe-Smectites for Pre-Biotic Molecule Catalysis During the Hadean Eon , 2010, Origins of Life and Evolution of Biospheres.

[34]  C. D. de Ronde,et al.  Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[36]  K. Konhauser,et al.  Banded iron formations , 2011 .

[37]  T. Masuda,et al.  Plate Tectonics at 3.8–3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland , 1999, The Journal of Geology.

[38]  M. J. Bas IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks , 2000 .

[39]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[40]  H. McSween,et al.  The Martian Surface: Implications of observed primary lithologies , 2008 .

[41]  K. Herkenhoff,et al.  Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rov , 2011 .

[42]  A. Treiman,et al.  Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway) , 2002 .

[43]  S. Murchie,et al.  Geologic setting of serpentine deposits on Mars , 2010 .

[44]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[45]  J. Martínez-Frías,et al.  Komatiites: From Earth's Geological Settings to Planetary and Astrobiological Contexts , 2005, physics/0512118.

[46]  H. Y. McSween,et al.  Addendum: Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[47]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[48]  F. Foucher,et al.  Synthesis of a spinifex‐textured basalt as an analog to Gusev crater basalts, Mars , 2012 .

[49]  F. Foucher,et al.  Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions , 2013 .

[50]  Hubert Staudigel,et al.  Early Life Recorded in Archean Pillow Lavas , 2004, Science.

[51]  C. Weitz,et al.  Opaline silica in young deposits on Mars , 2008 .

[52]  L. Rothschild,et al.  The Geology and Habitability of Terrestrial Planets: Fundamental Requirements for Life , 2007 .

[53]  Derek Pullan,et al.  Analogue Studies for In Situ Surface Planetary Exploration. , 2009 .

[54]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[55]  S. Squyres,et al.  Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation , 2006 .

[56]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[57]  W. Reimold,et al.  Processes on the early Earth , 2006 .

[58]  N. Arndt Komatiites, kimberlites, and boninites , 2003 .

[59]  Joan Martí,et al.  Stratigraphy, structure, and volcanic evolution of the Pico Teide–Pico Viejo formation, Tenerife, Canary Islands , 2000 .

[60]  Frances Westall,et al.  Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. , 2011, Astrobiology.

[61]  D. Lowe,et al.  The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert , 2006 .

[62]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[63]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[64]  A. Hofmann,et al.  Carbonaceous cherts in the Barberton greenstone belt and their significance for the study of early life in the Archean record. , 2007, Astrobiology.

[65]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[66]  F. Westall Morphological Biosignatures in Early Terrestrial and Extraterrestrial Materials , 2008 .

[67]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[68]  Robert C. Anderson,et al.  Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars , 2001 .

[69]  L. Vezzoli,et al.  Explosive eruption of a picrite: The 3930 BP subplinian eruption of Etna volcano (Italy) , 2005 .

[70]  P. Christensen,et al.  Evidence for Komatiite-type lavas on Mars from Phobos ISM data and other observations , 1994 .

[71]  Frances Westall,et al.  3 Early Life on Earth and Analogies to Mars , 2005 .

[72]  R. Léveillé,et al.  Cathodoluminescence Instrumentation for Analysis of Martian Sediments , 2009 .

[73]  A. Steele,et al.  Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard , 2007 .

[74]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[75]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[76]  F. Farges,et al.  Hydrothermal synthesis, between 75 and 150°C, of High-charge, ferric nontronites , 2008 .

[77]  B. Orberger,et al.  Micro-facies and origin of some Archaean cherts (Pilbara, Australia) , 2006 .

[78]  Frances Westall,et al.  Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa , 2011 .

[79]  M. Tice Environmental controls on photosynthetic microbial mat distribution and morphogenesis on a 3.42 Ga clastic-starved platform. , 2009, Astrobiology.

[80]  Hubert Staudigel,et al.  Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks , 2007 .

[81]  R. Wiens,et al.  The Petrochemistry of Jake_M: A Martian Mugearite , 2013, Science.

[82]  M. Izawa,et al.  Basaltic glass as a habitat for microbial life: Implications for astrobiology and planetary exploration , 2010 .

[83]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[84]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[85]  R. C. Wiens,et al.  Mars Science Laboratory: First 100 Sols of Geologic and Geochemical Exploration from Bradbury Landing to Glenelg , 2013 .