Full-field vibrometry by high-speed digital holography for middle-ear mechanics

............................................................................................................................... i Acknowledgements ............................................................................................................ iv Table of contents ................................................................................................................. v List of Figures .................................................................................................................... xi List of Tables ................................................................................................................... xix Nomenclature .................................................................................................................... xx Objectives ........................................................................................................................... 1

[1]  John J. Rosowski,et al.  Digital holographic measurements of shape and three-dimensional sound-induced displacements of tympanic membrane , 2013 .

[2]  Cosme Furlong,et al.  Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane. , 2013, Optical engineering.

[3]  Cosme Furlong,et al.  Miniaturization as a key factor to the development and application of advanced metrology systems , 2012, Other Conferences.

[4]  K. Larkin Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  I. Dobrev,et al.  Design of a positioning system for a holographic otoscope , 2010, Optical Engineering + Applications.

[6]  W. Decraemer,et al.  Optoelectronic moire projector for real-time shape and deformation studies of the tympanic membrane. , 1997, Journal of biomedical optics.

[7]  Thomas Zahnert,et al.  The differential diagnosis of hearing loss. , 2011, Deutsches Arzteblatt international.

[8]  J. Dirckx,et al.  Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus , 2012, Biomechanics and modeling in mechanobiology.

[9]  John J. Rosowski,et al.  Implementation and Evaluation of Single Frame Recording Techniques for Holographic Measurements of the Tympanic Membrane In-Vivo , 2014 .

[10]  John J. Rosowski,et al.  Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4–25kHz , 2009, Hearing Research.

[11]  Terry Yuan-Fang Chen,et al.  An instantaneous phase shifting ESPI system for dynamic deformation measurement , 2011 .

[12]  Cosme Furlong,et al.  Long-Term Effects of Cyclic Environmental Conditions on Paintings in Museum Exhibition by Laser Shearography , 2014 .

[13]  R. Adrian Twenty years of particle image velocimetry , 2005 .

[14]  P Smigielski,et al.  Holographic interferometry applied to the investigation of tympanic-membrane displacements in guinea pig ears subjected to acoustic impulses. , 1975, The Journal of the Acoustical Society of America.

[15]  Zhongping Chen,et al.  Imaging the Human Tympanic Membrane Using Optical Coherence Tomography In Vivo , 2008, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[16]  Ruikang K. Wang,et al.  Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry. , 2012, Journal of biomedical optics.

[17]  C. Wykes,et al.  Holographic and Speckle Interferometry: A Discussion of the Theory, Practice and Application of the Techniques , 1983 .

[18]  Per Gren,et al.  On structure‐borne sound: Experiments showing the initial transient acoustic wave field generated by an impacted plate , 1994 .

[19]  N. Hulli,et al.  Development of an optoelectronic holographic otoscope system for characterization of sound-induced displacements in tympanic membranes , 2009 .

[20]  B. W. Lawton,et al.  Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. , 1989, The Journal of the Acoustical Society of America.

[21]  Osamu Matoba,et al.  Parallel optical-path-length-shifting digital holography. , 2009, Applied optics.

[22]  Gary S. Schajer,et al.  Modulo-2pi phase determination from individual ESPI images , 2012 .

[23]  R. M. Sachs,et al.  Anthropometric manikin for acoustic research. , 1975, The Journal of the Acoustical Society of America.

[24]  Ryszard J. Pryputniewicz,et al.  Measurement Of Vibration Patterns Using Electro-Optic Holography , 1990, Optics & Photonics.

[25]  Mette Owner-Petersen,et al.  Decorrelation and fringe visibility: on the limiting behavior of various electronic speckle-pattern correlation interferometers , 1991 .

[26]  S. Merchant,et al.  Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. , 2013, The Journal of the Acoustical Society of America.

[27]  D. Schmitt,et al.  Optimization of fringe pattern calculation with direct correlations in speckle interferometry. , 1997, Applied optics.

[28]  John J. Rosowski,et al.  Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane , 2013, Hearing Research.

[29]  Julia Lobera,et al.  A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography , 2008 .

[30]  Enrico Primo Tomasini,et al.  Laser Doppler Vibrometry: Development of advanced solutions answering to technology's needs , 2006 .

[31]  H. Freund,et al.  Differential effects of changes in mechanical limb properties on physiological and pathological tremor. , 1987, Journal of neurology, neurosurgery, and psychiatry.

[32]  Ryszard J. Pryputniewicz,et al.  Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras , 2002, SPIE Optics + Photonics.

[33]  Jeffrey Cheng,et al.  Automatic Acquisition and Processing of Large Sets of Holographic Measurements in Medical Research , 2011 .

[34]  Yôiti Suzuki,et al.  Equal-loudness-level contours for pure tones. , 2004, The Journal of the Acoustical Society of America.

[35]  Matej Kristan,et al.  A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform , 2006, Pattern Recognit. Lett..

[36]  John J. Rosowski,et al.  Diagnostic Utility of Laser-Doppler Vibrometry in Conductive Hearing Loss with Normal Tympanic Membrane , 2003, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[37]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[38]  Cosme Furlong,et al.  HIGH-SPEED DIGITAL HOLOGRAPHIC METHODS TO CHARACTERIZE THE TRANSIENT ACOUSTO-MECHANICAL RESPONSE OF HUMAN TM , 2013 .

[39]  Cosme Furlong,et al.  Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation. , 2011, Scanning.

[40]  J. Buytaert,et al.  Full-Field Thickness Distribution of Human Tympanic Membrane Obtained with Optical Coherence Tomography , 2013, Journal of the Association for Research in Otolaryngology.

[41]  J. T. Cheng,et al.  Optimization of a Lensless Digital Holographic Otoscope System for Transient Measurements of the Human Tympanic Membrane , 2015, Experimental mechanics.

[42]  S. Neely From Sound to Synapse: Physiology of the Mammalian Ear , 1998 .

[43]  John J. Rosowski,et al.  Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling , 2014, Hearing Research.

[44]  Timothy J. Miller,et al.  The application of high-speed digital image correlation , 2008 .

[45]  J E Sollid Holographic interferometry applied to measurements of small static displacements of diffusely reflecting surfaces. , 1969, Applied optics.

[46]  L L Laubach,et al.  Anthropometry of the human ear. (A photogrammetric study of USAF flight personnel). AMRL-TR-67-203. , 1968, AMRL-TR. Aerospace Medical Research Laboratories.

[47]  W. F. Decraemer,et al.  Interferometer for Eardrum Shape Measurement, Based on Projection of Straight Line Rulings , 2000, Lasers in Medical Science.

[48]  Vladimir B. Markov,et al.  Matrix laser vibrometer for transient modal imaging and rapid nondestructive testing , 2008, International Conference on Vibration Measurements by Laser Techniques: Advances and Applications.

[49]  R. N. Stiles,et al.  Mechanical factors in human tremor frequency. , 1967, Journal of applied physiology.

[50]  R. J. Ritsma,et al.  Stimulated acoustic emissions from the human ear , 1979 .

[51]  Wolfgang Osten,et al.  High speed digital holographic interferometry , 2006, International Conference on Vibration Measurements by Laser Techniques: Advances and Applications.

[52]  S. Merchant,et al.  Motion of the surface of the human tympanic membrane measured with stroboscopic holography , 2010, Hearing Research.

[53]  J. Kobler,et al.  Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles , 2013, Hearing Research.

[54]  James L. Flanagan,et al.  Digital coding of speech in sub-bands , 1976, The Bell System Technical Journal.

[55]  K. T. Ramesh,et al.  Digital image processing of photoelastic fringes—A new approach , 1991 .

[56]  John J. Rosowski,et al.  Development of an optoelectronic holographic platform for otolaryngology applications , 2010, Optical Engineering + Applications.

[57]  J R Johnstone,et al.  Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. , 1975, The Journal of the Acoustical Society of America.

[58]  Mikael Sundberg,et al.  Optical Methods for Tympanic Membrane Characterisation : Towards Objective Otoscopy in Otitis Media , 2008 .

[59]  Lars Chittka,et al.  Perception Space—The Final Frontier , 2005, PLoS biology.

[60]  Chris L. Koliopoulos,et al.  Simultaneous phase-shift interferometer , 1992, Optics & Photonics.

[61]  Thomas S. Huang,et al.  Digital Holography , 2003 .

[62]  J J Rosowski,et al.  Preliminary Analyses of Tympanic‐Membrane Motion from Holographic Measurements , 2009, Strain.

[63]  Ichirou Yamaguchi,et al.  Point spread functions of digital reconstruction of digitally recorded holograms , 2005, SPIE/COS Photonics Asia.

[64]  Sunil Puria,et al.  Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. , 2003, The Journal of the Acoustical Society of America.

[65]  J. Goodman Introduction to Fourier optics , 1969 .

[66]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[67]  K A Stetson,et al.  Fourier-transform evaluation of phase data in spatially phase-biased TV holograms. , 1996, Applied optics.

[68]  P. Picart,et al.  Demodulation of Spatial Carrier Images: Performance Analysis of Several Algorithms Using a Single Image , 2013, 1310.0725.

[69]  D. McCarron A Guide to Acousto-Optic Modulators , 2007 .

[70]  Nikhil D Bapat,et al.  Development of Sound Presentation System (SPS) for Characterization of Sound Induced Displacements in Tympanic Membranes , 2011 .

[71]  John J. Rosowski,et al.  Study of the Transient Response of Tympanic Membranes Under Acoustic Excitation , 2014 .

[72]  Munther A. Gdeisat,et al.  Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. , 2002, Applied optics.

[73]  R. Smythe,et al.  Instantaneous Phase Measuring Interferometry , 1984 .

[74]  J. T. Cheng,et al.  High-Speed Digital Holography for Transient Response of the Human Tympanic Membrane , 2015 .

[76]  J. Allen,et al.  Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. , 1998, The Journal of the Acoustical Society of America.

[77]  S. Khanna,et al.  Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. , 1972, The Journal of the Acoustical Society of America.

[78]  Saumil N Merchant,et al.  Comparison of Ear-Canal Reflectance and Umbo Velocity in Patients With Conductive Hearing Loss: A Preliminary Study , 2011, Ear and hearing.

[79]  Cosme Furlong,et al.  Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography , 2014, Journal of biomedical optics.

[80]  J. Rosowski,et al.  An Overview of Wideband Immittance Measurements Techniques and Terminology: You Say Absorbance, I Say Reflectance , 2013, Ear and hearing.

[81]  D. Bagger-sjöbäck,et al.  Displacement of the gerbil tympanic membrane under static pressure variations measured with a real-time differential moire interferometer , 1993, Hearing Research.

[82]  P. Culmer,et al.  An Admittance Control Scheme for a Robotic Upper- Limb Stroke Rehabilitation System , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[83]  Thierry Blu,et al.  A novel non-diffractive reconstruction method for digital holographic microscopy , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[84]  Matt Novak,et al.  Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer. , 2005, Applied optics.

[85]  R. Thalmann,et al.  Heterodyne and quasi-heterodyne holographic interferometry , 1985 .

[86]  T. Kreis Handbook of Holographic Interferometry: Optical and Digital Methods , 2004 .

[87]  Giancarlo Pedrini,et al.  Digital double pulse-TV-holography , 1997 .

[88]  J. Rosowski,et al.  Current Topics in the Study of Sound Conduction to the Inner Ear , 2014 .

[89]  Wolfgang Osten,et al.  High-speed digital holographic interferometry for vibration measurement. , 2006, Applied optics.

[90]  Cosme Furlong,et al.  Assessing eardrum deformation by digital holography. , 2013, SPIE newsroom.

[91]  Yasuhiro Awatsuji,et al.  Parallel quasi-phase-shifting digital holography , 2004 .

[92]  S. E. Voss,et al.  Assessment of Ear Disorders Using Power Reflectance , 2013, Ear and hearing.

[93]  Cosme Furlong,et al.  Investigation of thermomechanical effects of lighting conditions on canvas paintings by laser shearography , 2012, Other Conferences.

[94]  Xiangming Zhang,et al.  Dynamic properties of human tympanic membrane – experimental measurement and modelling analysis , 2010 .

[95]  Martin Reisslein,et al.  Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison , 2011, IEEE Transactions on Broadcasting.

[96]  Sunil Puria,et al.  Middle-ear circuit model parameters based on a population of human ears. , 2008, The Journal of the Acoustical Society of America.

[97]  Cosme Furlong,et al.  Design of a mechatronic positioner for a holographic otoscope system , 2011 .

[98]  Hongbing Lu,et al.  A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. , 2008, Journal of biomechanical engineering.