Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment

Abstract The influence of irradiance on the nitrifying activity in photobioreactors of a bacterial consortium enriched from a wastewater treatment bioreactor was assessed using independent ammonium oxidation kinetic batch tests and respirometric assays. Culture irradiance below 250 μmol m −2  s −1 did not show a significant effect on nitrification activity, while irradiance at 500 and 1250 μmol m −2  s −1 caused a decrease of 20 and 60% in the specific total ammonium nitrogen removal rates and a reduction of 26 and 71% in the specific NO 3 − production rates, respectively. However, no significant influence of irradiance on the affinity constant of NH 4 + oxidation was observed. The increasing nitrite accumulation at higher light intensities suggested a higher light sensitivity of nitrite oxidizers. Additionally, NH 4 + oxidation respirometric assays showed a decrease in the oxygen uptake of 14 and 50% at 500 and 1250 μmol m −2  s −1 , respectively. The experimental determination of the light extinction coefficient (λ) of the nitrifying bacterial consortium (λ = 0.0003 m 2  g −1 ) and of Chlorella sorokiniana (λ = 0.1045 m 2  g −1 ) allowed the estimation of light penetration in algal-bacterial high rate algal ponds, which showed that photoinhibition of nitrifying bacteria can be significantly mitigated in the presence of high density microalgal cultures.

[1]  P. García-Encina,et al.  Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. , 2013, Bioresource technology.

[2]  A. Shilton,et al.  Wastewater treatment high rate algal ponds for biofuel production. , 2011, Bioresource technology.

[3]  P. García-Encina,et al.  Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater , 2014 .

[4]  E. Casamayor,et al.  Differential photoinhibition of bacterial and archaeal ammonia oxidation. , 2012, FEMS microbiology letters.

[5]  D. Arp,et al.  14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. , 1992, The Journal of biological chemistry.

[6]  P. Harrison,et al.  Acclimation and toxicity of high ammonium concentrations to unicellular algae. , 2014, Marine pollution bulletin.

[7]  J. Alleman,et al.  Light induced Nitrosomonas inhibition , 1987 .

[8]  J. C. Merchuk,et al.  Photobioreactor Design and Fluid Dynamics , 2007 .

[9]  Guerrero Ma,et al.  Photoinhibition of marine nitrifying bacteria. I. Wavelength-dependent response , 1996 .

[10]  Sunjin Kim,et al.  Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate , 2013 .

[11]  A. Abeliovich,et al.  Interdependent environmental factors controlling nitrification in waters , 2000 .

[12]  R. Sims,et al.  Algal biofilm based technology for wastewater treatment , 2014 .

[13]  E. Bock Vergleichende Untersuchungen über die Wirkung sichtbaren Lichtes auf Nitrosomonas europaea und Nitrobacter winogradskyi , 1965, Archiv für Mikrobiologie.

[14]  Jones Rd,et al.  Photoinhibition of marine nitrifying bacteria. II. Dark recovery after monochromatic or polychromatic irradiation , 1996 .

[15]  A. Eisenstark Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells. , 1971, Advances in genetics.

[16]  Yanyan Su,et al.  Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. , 2011, Water research.

[17]  H. Engel,et al.  Photoinaktivierung von Nitrobacter winogradskyi Buch , 2004, Archiv für Mikrobiologie.

[18]  Richard L. Smith,et al.  In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA , 2009 .

[19]  I. de Godos,et al.  Assessing carbon and nitrogen removal in a novel anoxic-aerobic cyanobacterial-bacterial photobioreactor configuration with enhanced biomass sedimentation. , 2014, Water research.

[20]  T. Yoshioka,et al.  Photoinhibition and recovery of NH4+-oxidizing bacteria and NO2−-oxidizing bacteria , 1984 .

[21]  N. Abdel-Raouf,et al.  Microalgae and wastewater treatment. , 2012, Saudi journal of biological sciences.

[22]  G. Schön,et al.  Der Einfluß des Lichtes auf Nitrosomonas europaea Win , 1962, Archiv für Mikrobiologie.

[23]  Guerrero Ma,et al.  Light-induced absorbance changes associated with photoinhibition and pigments in nitrifying bacteria , 1997 .

[24]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.

[25]  A. Hooper,et al.  Specific Inhibitors of Ammonia Oxidation in Nitrosomonas , 1973, Journal of bacteriology.

[26]  F. Lananan,et al.  Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.) , 2014 .

[27]  A. Hooper,et al.  Photoinactivation of Ammonia Oxidation in Nitrosomonas , 1974, Journal of bacteriology.

[28]  J. Jagger Physiological Effects of Near-Ultraviolet Radiation on Bacteria , 1983 .

[29]  A. Annachhatre,et al.  Novel microbial nitrogen removal processes. , 2004, Biotechnology advances.

[30]  Benoit Guieysse,et al.  Algal-bacterial processes for the treatment of hazardous contaminants: a review. , 2006, Water research.

[31]  H. D. Stensel,et al.  Wastewater Engineering: Treatment and Reuse , 2002 .

[32]  R. Conrad,et al.  Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. , 2011, FEMS microbiology ecology.

[33]  K. Elbanna,et al.  A new simple method for the enumeration of nitrifying bacteria in different environments , 2018 .