Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron.

[1]  Tuomas P J Knowles,et al.  Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials , 2016, Advanced materials.

[2]  Sreenath Bolisetty,et al.  Amyloid-carbon hybrid membranes for universal water purification. , 2016, Nature nanotechnology.

[3]  Ingo Breßler,et al.  SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions , 2015, Journal of applied crystallography.

[4]  Seth R Flaxman,et al.  A systematic analysis of global anemia burden from 1990 to 2010. , 2014, Blood.

[5]  A. Xu,et al.  A new fluorescent probe for monitoring amyloid fibrillation with high sensitivity and reliability , 2013 .

[6]  R. Mezzenga,et al.  Magnetic-responsive hybrids of Fe3O4 nanoparticles with β-lactoglobulin amyloid fibrils and nanoclusters. , 2013, ACS nano.

[7]  Hugo M. Botelho,et al.  Metal ions as modulators of protein conformation and misfolding in neurodegeneration , 2012 .

[8]  X. Mao,et al.  Preparation and characterization of β-lactoglobulin hydrolysate-iron complexes. , 2012, Journal of dairy science.

[9]  R. Mezzenga,et al.  Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. , 2012, Nature nanotechnology.

[10]  T. Walczyk,et al.  Mobilization of storage iron is reflected in the iron isotopic composition of blood in humans , 2012, JBIC Journal of Biological Inorganic Chemistry.

[11]  R. Mezzenga,et al.  Amyloid-mediated synthesis of giant, fluorescent, gold single crystals and their hybrid sandwiched composites driven by liquid crystalline interactions. , 2011, Journal of colloid and interface science.

[12]  R. Mezzenga,et al.  General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. , 2011, Biomacromolecules.

[13]  R. Mezzenga,et al.  Templating effects of lyotropic liquid crystals in the encapsulation of amyloid fibrils and their stimuli-responsive magnetic behavior , 2011 .

[14]  Jens G. Reich,et al.  Systems analysis of iron metabolism: the network of iron pools and fluxes , 2010, BMC Systems Biology.

[15]  Harjinder Singh,et al.  In vitro digestion of beta-lactoglobulin fibrils formed by heat treatment at low pH. , 2010, Journal of agricultural and food chemistry.

[16]  R. Mezzenga,et al.  Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. , 2010, Nature nanotechnology.

[17]  S. Pratsinis,et al.  Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. , 2010, Nature nanotechnology.

[18]  R. Mezzenga,et al.  Liquid crystalline phase behavior of protein fibers in water: experiments versus theory. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[19]  David Eisenberg,et al.  In Brief , 2009, Nature Reviews Neuroscience.

[20]  E. Acosta Bioavailability of nanoparticles in nutrient and nutraceutical delivery , 2009 .

[21]  J. Toblli,et al.  Comparative Study of Gastrointestinal Tract and Liver Toxicity of Ferrous Sulfate, Iron Amino Chelate and Iron Polymaltose Complex in Normal Rats , 2008, Pharmacology.

[22]  R. Boom,et al.  Peptides are building blocks of heat-induced fibrillar protein aggregates of beta-lactoglobulin formed at pH 2. , 2008, Biomacromolecules.

[23]  Richard F Hurrell,et al.  Nutritional iron deficiency , 2007, The Lancet.

[24]  R. Hurrell Linking the bioavailability of iron compounds to the efficacy of iron-fortified foods. , 2007, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.

[25]  S. Pratsinis,et al.  Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. , 2007, The Journal of nutrition.

[26]  Irfan Rahman,et al.  Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method , 2006, Nature Protocols.

[27]  Daniel W. Elliott,et al.  Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects , 2006 .

[28]  Matthew R Chapman,et al.  Curli biogenesis and function. , 2006, Annual review of microbiology.

[29]  Hong Wang,et al.  Characterization of zero-valent iron nanoparticles. , 2006, Advances in colloid and interface science.

[30]  M. Brosnan,et al.  The sulfur-containing amino acids: an overview. , 2006, The Journal of nutrition.

[31]  R. Hurrell,et al.  Photostability of sodium iron ethylenediaminetetraacetic acid (NaFeEDTA) in stored fish sauce and soy sauce , 2006 .

[32]  C. Degueldre,et al.  Offline Persistence of Memory-Related Cerebral Activity during Active Wakefulness , 2006, PLoS biology.

[33]  Atanas V Koulov,et al.  Functional Amyloid Formation within Mammalian Tissue , 2005, PLoS biology.

[34]  D. Huber,et al.  Synthesis, properties, and applications of iron nanoparticles. , 2005, Small.

[35]  Claus Jacob,et al.  Metal and redox modulation of cysteine protein function. , 2003, Chemistry & biology.

[36]  S. Duvezin-Caubet,et al.  Amyloid aggregates of the HET-s prion protein are infectious , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Vriend,et al.  Amyloids protect the silkmoth oocyte and embryo , 2000, FEBS letters.

[38]  J. Cook,et al.  Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages , 1999, British Journal of Nutrition.

[39]  P. J. van Mil,et al.  Heat-Induced Aggregation of β-Lactoglobulin: Role of the Free Thiol Group and Disulfide Bonds , 1997 .

[40]  N. Zavaleta,et al.  Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal , 1997 .

[41]  T. Walczyk Iron isotope ratio measurements by negative thermal ionisation mass spectrometry using FeF4− molecular ions , 1997 .

[42]  P. G. Reeves,et al.  AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. , 1993, The Journal of nutrition.

[43]  J. Cook,et al.  Ferrous fumarate fortification of a chocolate drink powder , 1991, British Journal of Nutrition.

[44]  J. T. Tanner,et al.  Comparison of in vitro, animal, and clinical determinations of iron bioavailability: International Nutritional Anemia Consultative Group Task Force report on iron bioavailability. , 1989, The American journal of clinical nutrition.

[45]  J. Hodges,et al.  Red cell, plasma, and blood volume in the healthy women measured by radiochromium cell-labeling and hematocrit. , 1962, The Journal of clinical investigation.

[46]  L. Allen,et al.  Guidelines on food fortification with micronutrients , 2006 .

[47]  V. F. Sears Neutron scattering lengths and cross sections , 1992 .

[48]  L. Hallberg,et al.  Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans. , 1991, The American journal of clinical nutrition.

[49]  L. Hallberg,et al.  Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. , 1989, The American journal of clinical nutrition.

[50]  M D Blaufox,et al.  Blood volume in the rat. , 1985, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[51]  Makler Pt,et al.  Bone scintigraphy: differentiating benign cortical irregularity of the distal femur from malignancy. , 1984, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[52]  M. Ishimoto,et al.  A study on nitrate reductase from Propionibacterium acidi-propionici. , 1978, Journal of biochemistry.