Approximate distance oracles

Let G = (V,E) be an undirected weighted graph with vVv = n and vEv = m. Let k ≥ 1 be an integer. We show that G = (V,E) can be preprocessed in O(kmn1/k) expected time, constructing a data structure of size O(kn1p1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k−1, that is, the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdos, implies that Ω(n1p1/k) space is needed in the worst case for any real stretch strictly smaller than 2kp1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name "oracle". Previously, data structures that used only O(n1p1/k) space had a query time of Ω(n1/k).Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs.

[1]  Edith Cohen,et al.  All-pairs small-stretch paths , 1997, SODA '97.

[2]  Felix Lazebnik,et al.  A characterization of the components of the graphs D(k, q) , 1996, Discret. Math..

[3]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[4]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[5]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[6]  Sandeep Sen,et al.  Approximate distance oracles for unweighted graphs in Õ (n2) time , 2004, SODA '04.

[7]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[8]  Philip N. Klein,et al.  Preprocessing an undirected planar network to enable fast approximate distance queries , 2002, SODA '02.

[9]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[10]  Martti Penttonen,et al.  A Reliable Randomized Algorithm for the Closest-Pair Problem , 1997, J. Algorithms.

[11]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[12]  Sandeep Sen,et al.  A Simple Linear Time Algorithm for Computing a (2k-1)-Spanner of O(n1+1/k) Size in Weighted Graphs , 2003, ICALP.

[13]  Mikkel Thorup Even strongly universal hashing is pretty fast , 2000, SODA '00.

[14]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[15]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[16]  Edith Cohen Fast Algorithms for Constructing t-Spanners and Paths with Stretch t , 1998, SIAM J. Comput..

[17]  Jeffrey Scott Vitter,et al.  External memory algorithms and data structures: dealing with massive data , 2001, CSUR.

[18]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[19]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[20]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[21]  Piotr Indyk,et al.  Sublinear time algorithms for metric space problems , 1999, STOC '99.

[22]  Yair Bartal,et al.  On approximating arbitrary metrices by tree metrics , 1998, STOC '98.

[23]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[24]  Mikkel Thorup Floats, Integers, and Single Source Shortest Paths , 2000, J. Algorithms.

[25]  Michael Elkin,et al.  Computing almost shortest paths , 2001, TALG.

[26]  Felix Lazebnik,et al.  New Examples of Graphs without Small Cycles and of Large Size , 1993, Eur. J. Comb..

[27]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[28]  Catherine C. McGeoch All-pairs shortest paths and the essential subgraph , 2005, Algorithmica.

[29]  Mikkel Thorup,et al.  Compact oracles for reachability and approximate distances in planar digraphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[30]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[31]  Christos D. Zaroliagis,et al.  Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms , 2000, Algorithmica.

[32]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[33]  J. Matousek,et al.  On the distortion required for embedding finite metric spaces into normed spaces , 1996 .

[34]  Joachim Gudmundsson,et al.  Approximate Distance Oracles Revisited , 2002, ISAAC.

[35]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[36]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[37]  Kunal Talwar,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2004, J. Comput. Syst. Sci..

[38]  Baruch Awerbuch,et al.  Routing with Polynomial Communication-Space Trade-Off , 1992, SIAM J. Discret. Math..

[39]  Jacques Tits,et al.  Sur la trialité et certains groupes qui s’en déduisent , 1959 .

[40]  Uri Zwick,et al.  All pairs shortest paths in undirected graphs with integer weights , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[41]  Piotr Indyk,et al.  Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.

[42]  Noga Alon,et al.  Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions , 1994, Algorithmica.

[43]  D. Peleg Proximity-preserving labeling schemes , 2000, J. Graph Theory.

[44]  David R. Karger,et al.  Finding the Hidden Path: Time Bounds for All-Pairs Shortest Paths , 1993, SIAM J. Comput..

[45]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[46]  David Peleg,et al.  (1+epsilon, beta)-Spanner Constructions for General Graphs , 2004, SIAM J. Comput..

[47]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[48]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[49]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[50]  Noga Alon,et al.  The Moore Bound for Irregular Graphs , 2002, Graphs Comb..

[51]  Lenore Cowen,et al.  Near-Linear Time Construction of Sparse Neighborhood Covers , 1999, SIAM J. Comput..

[52]  I. Reiman Über ein Problem von K. Zarankiewicz , 1958 .

[53]  Rephael Wenger,et al.  Extremal graphs with no C4's, C6's, or C10's , 1991, J. Comb. Theory, Ser. B.

[54]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[55]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.

[56]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[57]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.