Approximate distance oracles
暂无分享,去创建一个
[1] Edith Cohen,et al. All-pairs small-stretch paths , 1997, SODA '97.
[2] Felix Lazebnik,et al. A characterization of the components of the graphs D(k, q) , 1996, Discret. Math..
[3] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[4] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .
[5] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[6] Sandeep Sen,et al. Approximate distance oracles for unweighted graphs in Õ (n2) time , 2004, SODA '04.
[7] Ran Raz,et al. Distance labeling in graphs , 2001, SODA '01.
[8] Philip N. Klein,et al. Preprocessing an undirected planar network to enable fast approximate distance queries , 2002, SODA '02.
[9] F. Lazebnik,et al. A new series of dense graphs of high girth , 1995, math/9501231.
[10] Martti Penttonen,et al. A Reliable Randomized Algorithm for the Closest-Pair Problem , 1997, J. Algorithms.
[11] Uri Zwick,et al. All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..
[12] Sandeep Sen,et al. A Simple Linear Time Algorithm for Computing a (2k-1)-Spanner of O(n1+1/k) Size in Weighted Graphs , 2003, ICALP.
[13] Mikkel Thorup. Even strongly universal hashing is pretty fast , 2000, SODA '00.
[14] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[15] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[16] Edith Cohen. Fast Algorithms for Constructing t-Spanners and Paths with Stretch t , 1998, SIAM J. Comput..
[17] Jeffrey Scott Vitter,et al. External memory algorithms and data structures: dealing with massive data , 2001, CSUR.
[18] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[19] Rajeev Motwani,et al. Randomized algorithms , 1996, CSUR.
[20] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[21] Piotr Indyk,et al. Sublinear time algorithms for metric space problems , 1999, STOC '99.
[22] Yair Bartal,et al. On approximating arbitrary metrices by tree metrics , 1998, STOC '98.
[23] Mikkel Thorup,et al. Compact routing schemes , 2001, SPAA '01.
[24] Mikkel Thorup. Floats, Integers, and Single Source Shortest Paths , 2000, J. Algorithms.
[25] Michael Elkin,et al. Computing almost shortest paths , 2001, TALG.
[26] Felix Lazebnik,et al. New Examples of Graphs without Small Cycles and of Large Size , 1993, Eur. J. Comb..
[27] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.
[28] Catherine C. McGeoch. All-pairs shortest paths and the essential subgraph , 2005, Algorithmica.
[29] Mikkel Thorup,et al. Compact oracles for reachability and approximate distances in planar digraphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[30] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[31] Christos D. Zaroliagis,et al. Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms , 2000, Algorithmica.
[32] A. Rényii,et al. ON A PROBLEM OF GRAPH THEORY , 1966 .
[33] J. Matousek,et al. On the distortion required for embedding finite metric spaces into normed spaces , 1996 .
[34] Joachim Gudmundsson,et al. Approximate Distance Oracles Revisited , 2002, ISAAC.
[35] Larry Carter,et al. Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..
[36] Christopher M. Hartman. Extremal problems in graph theory , 1997 .
[37] Kunal Talwar,et al. A tight bound on approximating arbitrary metrics by tree metrics , 2004, J. Comput. Syst. Sci..
[38] Baruch Awerbuch,et al. Routing with Polynomial Communication-Space Trade-Off , 1992, SIAM J. Discret. Math..
[39] Jacques Tits,et al. Sur la trialité et certains groupes qui s’en déduisent , 1959 .
[40] Uri Zwick,et al. All pairs shortest paths in undirected graphs with integer weights , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[41] Piotr Indyk,et al. Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.
[42] Noga Alon,et al. Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions , 1994, Algorithmica.
[43] D. Peleg. Proximity-preserving labeling schemes , 2000, J. Graph Theory.
[44] David R. Karger,et al. Finding the Hidden Path: Time Bounds for All-Pairs Shortest Paths , 1993, SIAM J. Comput..
[45] David Peleg,et al. Distributed Computing: A Locality-Sensitive Approach , 1987 .
[46] David Peleg,et al. (1+epsilon, beta)-Spanner Constructions for General Graphs , 2004, SIAM J. Comput..
[47] M. Simonovits,et al. Cycles of even length in graphs , 1974 .
[48] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[49] Thomas H. Cormen,et al. Introduction to algorithms [2nd ed.] , 2001 .
[50] Noga Alon,et al. The Moore Bound for Irregular Graphs , 2002, Graphs Comb..
[51] Lenore Cowen,et al. Near-Linear Time Construction of Sparse Neighborhood Covers , 1999, SIAM J. Comput..
[52] I. Reiman. Über ein Problem von K. Zarankiewicz , 1958 .
[53] Rephael Wenger,et al. Extremal graphs with no C4's, C6's, or C10's , 1991, J. Comb. Theory, Ser. B.
[54] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.
[55] Uri Zwick,et al. All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.
[56] János Komlós,et al. Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[57] Mikkel Thorup,et al. Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.