About the Kohonen algorithm: strong or weak self-organization?
暂无分享,去创建一个
[1] Gilles Pagès,et al. Convergence in Distribution of the One-Dimensional Kohonen Algorithms when the Stimuli are not Uniform , 1994, Advances in Applied Probability.
[2] N. Jacobson,et al. Basic Algebra I , 1976 .
[3] G. Pagès,et al. Self-organization and a.s. convergence of the one-dimensional Kohonen algorithm with non-uniformly distributed stimuli , 1993 .
[4] Gilles Pagès,et al. A non linear Kohonen algorithm , 1994, ESANN.
[5] John S. Baras,et al. Convergence of Kohonen's learning vector quantization , 1990, 1990 IJCNN International Joint Conference on Neural Networks.
[6] Ralf Der,et al. A Novel Approach to Measure the Topology Preservation of Feature Maps , 1994 .
[7] John S. Baras,et al. Convergence of the Vectors in Kohonen’s Learning Vector Quantization , 1990 .
[8] Gilles Pagès,et al. CONVERGENCE OF STOCHASTIC ALGORITHMS: FROM THE KUSHNER-CLARK THEOREM TO THE LYAPOUNOV FUNCTIONAL METHOD , 1996 .
[9] O. Brandière,et al. Les algorithmes stochastiques contournent-ils les pièges? , 1995 .
[10] M. Benaïm. A Dynamical System Approach to Stochastic Approximations , 1996 .
[11] M. Benaim. Sur la nature des ensembles limites des trajectoires des algorithmes d'approximation stochastiques de type Robbins Monro , 1993 .
[12] J. Fort,et al. On the A.S. Convergence of the Kohonen Algorithm with a General Neighborhood Function , 1995 .