Logical Gaps in the Approximate Solutions of the Social Learning Game and an Exact Solution

After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.

[1]  Johannes Hörner,et al.  The wisdom of the minority , 2009, J. Econ. Theory.

[2]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.

[3]  Douglas Gale,et al.  Information Revelation and Strategic Delay in a Model of Investment , 1994 .

[4]  Douglas Gale,et al.  Bayesian learning in social networks , 2003, Games Econ. Behav..

[5]  David Gill,et al.  Sequential Decisions with Tests , 2008, Games Econ. Behav..

[6]  Attila Szolnoki,et al.  Wisdom of groups promotes cooperation in evolutionary social dilemmas , 2012, Scientific Reports.

[7]  A. Banerjee,et al.  A Simple Model of Herd Behavior , 1992 .

[8]  Angelika Steger,et al.  Observational Learning in Random Networks , 2007, COLT.

[9]  L. Vesterlund,et al.  Dynamic Monopoly Pricing and Herding , 2005 .

[10]  Pasquale Schiraldi,et al.  New product launch: herd seeking or herd preventing? , 2009 .

[11]  Pasquale Schiraldi,et al.  New Product Launch: Herd Seeking or Herd Preventing? , 2009 .

[12]  Lones Smith,et al.  Pathological Outcomes of Observational Learning , 2000 .

[13]  Daniel B. Neill,et al.  Cascade Effects in Heterogeneous Populations , 2005 .

[14]  S. Bikhchandani,et al.  You have printed the following article : A Theory of Fads , Fashion , Custom , and Cultural Change as Informational Cascades , 2007 .

[15]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[16]  K. Arrow,et al.  The New Palgrave Dictionary of Economics , 2020 .

[17]  Grant Schoenebeck,et al.  Social Learning in a Changing World , 2011, WINE.

[18]  Antonio Guarino,et al.  Aggregate information cascades , 2011, Games Econ. Behav..

[19]  Jon M. Kleinberg,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World [Book Review] , 2013, IEEE Technol. Soc. Mag..

[20]  Giuseppe Moscarini,et al.  Social learning in a changing world , 1998 .

[21]  Marco Ottaviani,et al.  Monopoly pricing in the binary herding model , 2008 .

[22]  S. Bikhchandani,et al.  Learning from the behavior of others : conformity, fads, and informational cascades , 1998 .