The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions

BackgroundMetabolic network reconstructions formalize our knowledge of metabolism. Gaps in these networks pinpoint regions of metabolism where biological components and functions are "missing." At the same time, a major challenge in the post genomic era involves characterisation of missing biological components to complete genome annotation.ResultsWe used the human metabolic network reconstruction RECON 1 and established constraint-based modelling tools to uncover novel functions associated with human metabolism. Flux variability analysis identified 175 gaps in RECON 1 in the form of blocked reactions. These gaps were unevenly distributed within metabolic pathways but primarily found in the cytosol and often caused by compounds whose metabolic fate, rather than production, is unknown. Using a published algorithm, we computed gap-filling solutions comprised of non-organism specific metabolic reactions capable of bridging the identified gaps. These candidate solutions were found to be dependent upon the reaction environment of the blocked reaction. Importantly, we showed that automatically generated solutions could produce biologically realistic hypotheses of novel human metabolic reactions such as of the fate of iduronic acid following glycan degradation and of N-acetylglutamate in amino acid metabolism.ConclusionsThe results demonstrate how metabolic models can be utilised to direct hypotheses of novel metabolic functions in human metabolism; a process that we find is heavily reliant upon manual curation and biochemical insight. The effectiveness of a systems approach for novel biochemical pathway discovery in mammals is demonstrated and steps required to tailor future gap filling algorithms to mammalian metabolic networks are proposed.

[1]  Jason A. Papin,et al.  Metabolic network analysis integrated with transcript verification for sequenced genomes , 2009, Nature Methods.

[2]  P. Vreken,et al.  Peroxisomal fatty acid alpha- and beta-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. , 2001, Biochemical Society transactions.

[3]  Philip E. Bourne,et al.  Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model , 2010, PLoS Comput. Biol..

[4]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[5]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[6]  Yoav Freund,et al.  Identifying metabolic enzymes with multiple types of association evidence , 2006, BMC Bioinformatics.

[7]  Lake-Ee Quek,et al.  On the reconstruction of the Mus musculus genome-scale metabolic network model. , 2008, Genome informatics. International Conference on Genome Informatics.

[8]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[9]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[10]  Michael Y. Galperin,et al.  'Conserved hypothetical' proteins: prioritization of targets for experimental study. , 2004, Nucleic acids research.

[11]  Characterization of the ornithine aminotransferase from Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[12]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[13]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[14]  D. Vitkup,et al.  Predicting genes for orphan metabolic activities using phylogenetic profiles , 2006, Genome Biology.

[15]  H. Mori,et al.  Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism , 2009, Molecular systems biology.

[16]  C. Gille,et al.  HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology , 2010, Molecular systems biology.

[17]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[18]  Andreas Hoppe,et al.  Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks , 2007, BMC Systems Biology.

[19]  Jeffrey D. Orth,et al.  Systematizing the generation of missing metabolic knowledge , 2010, Biotechnology and bioengineering.

[20]  R. Wolfinger,et al.  Carbohydrate-induced Differential Gene Expression Patterns in the Hyperthermophilic Bacterium Thermotoga maritima * 210 , 2003, The Journal of Biological Chemistry.

[21]  A. Elbein,et al.  Cloning, expression and characterization of the pig liver GDP-mannose pyrophosphorylase. Evidence that GDP-mannose and GDP-Glc pyrophosphorylases are different proteins. , 2000, European journal of biochemistry.

[22]  Gerbert A. Jansen,et al.  Peroxisomal fatty acid α- and β-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases , 2001 .

[23]  D. Shih,et al.  Cloning and Characterization of a New Member of the Nudix Hydrolases from Human and Mouse* , 2000, The Journal of Biological Chemistry.

[24]  F. Verheijen,et al.  Purification of the Lysosomal Sialic Acid Transporter , 1998, The Journal of Biological Chemistry.

[25]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[26]  Ronan M. T. Fleming,et al.  von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models , 2011, Bioinform..

[27]  N. Glansdorff,et al.  Biosynthesis and metabolism of arginine in bacteria , 1986 .

[28]  H. Kresse,et al.  Degradation of endocytosed dermatan sulfate proteoglycan in human fibroblasts. , 1988, The Journal of biological chemistry.

[29]  B. Palsson,et al.  Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions , 2010, Molecular systems biology.

[30]  G. Mancini,et al.  Sialic acid storage diseases. A multiple lysosomal transport defect for acidic monosaccharides. , 1991, The Journal of clinical investigation.

[31]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[32]  Olivier Lespinet,et al.  Orphan Enzymes? , 2005, Science.

[33]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[34]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[35]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[36]  E. Marcotte,et al.  Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana , 2010, Nature Biotechnology.

[37]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[38]  Bernhard O. Palsson,et al.  A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1 , 2010, BMC Systems Biology.

[39]  C. P. Morris,et al.  Human alpha-L-iduronidase: cDNA isolation and expression. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Toida,et al.  Gas Chromatography-Mass Spectrometric Determinations of Iduronic and Glucuronic Acids in Glycosaminoglycans after Reduction of Carboxylic Group Using Sodium Borodeuteride , 1992 .

[41]  U. Sauer,et al.  Automatic policing of biochemical annotations using genomic correlations , 2009, Nature chemical biology.

[42]  A. Barabasi,et al.  Molecular Systems Biology 5; Article number 262; doi:10.1038/msb.2009.16 Citation: Molecular Systems Biology 5:262 , 2022 .

[43]  P. Veldhoven,et al.  Functions and Organization of Peroxisomal β‐Oxidation , 1996 .

[44]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Carolyn R. Bertozzi,et al.  Essentials of Glycobiology , 1999 .

[46]  Donald A. Comfort,et al.  An Expression-Driven Approach to the Prediction of Carbohydrate Transport and Utilization Regulons in theHyperthermophilic Bacterium Thermotoga maritima , 2005, Journal of bacteriology.

[47]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[48]  Ben Lehner,et al.  Tissue specificity and the human protein interaction network , 2009, Molecular systems biology.

[49]  Bernhard O Palsson,et al.  Latent Pathway Activation and Increased Pathway Capacity Enable Escherichia coli Adaptation to Loss of Key Metabolic Enzymes* , 2006, Journal of Biological Chemistry.

[50]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): mouse biology and model systems , 2007, Nucleic Acids Res..

[51]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[52]  Neema Jamshidi,et al.  Systems biology of SNPs , 2006, Molecular systems biology.

[53]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[54]  Bernhard O. Palsson,et al.  BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions , 2010, BMC Bioinformatics.

[55]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[56]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[57]  B. Kagan,et al.  Amyloidosis and Protein Folding , 2005, Science.

[58]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[59]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[60]  Karin Breuer,et al.  Curating the innate immunity interactome , 2010, BMC Systems Biology.

[61]  Antje Chang,et al.  BRENDA, enzyme data and metabolic information , 2002, Nucleic Acids Res..

[62]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[63]  Jason A. Papin,et al.  Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism , 2011, Molecular systems biology.

[64]  Ruolin Yang,et al.  Characterization and Comparison of the Tissue-Related Modules in Human and Mouse , 2010, PloS one.

[65]  Lifeng Chen,et al.  Distribution of orphan metabolic activities. , 2007, Trends in biotechnology.

[66]  Kiran Raosaheb Patil,et al.  Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes , 2010, PLoS Comput. Biol..

[67]  L. Nielsen,et al.  Modeling Hybridoma Cell Metabolism Using a Generic Genome‐Scale Metabolic Model of Mus musculus , 2008, Biotechnology progress.

[68]  N. Katunuma,et al.  Crystallization and properties of human liver ornithine aminotransferase. , 1982, Journal of biochemistry.

[69]  BMC Systems Biology , 2007 .

[70]  P. Karp Call for an enzyme genomics initiative , 2004, Genome Biology.

[71]  P. Meikle,et al.  Glycosaminoglycan degradation fragments in mucopolysaccharidosis I. , 2004, Glycobiology.

[72]  R. Herman Mannose metabolism. I. , 1971, The American journal of clinical nutrition.

[73]  B. Palsson,et al.  Candidate Metabolic Network States in Human Mitochondria , 2005, Journal of Biological Chemistry.

[74]  Seongwon Seo,et al.  BMC Systems Biology BioMed Central Methodology article , 2009 .

[75]  H. Galjaard,et al.  Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides. , 1989, The Journal of biological chemistry.

[76]  A. McLennan,et al.  Cloning, expression and characterization of YSA1H, a human adenosine 5'-diphosphosugar pyrophosphatase possessing a MutT motif. , 1999, The Biochemical journal.

[77]  V. de Crécy-Lagard,et al.  'Unknown' proteins and 'orphan' enzymes: the missing half of the engineering parts list--and how to find it. , 2009, The Biochemical journal.

[78]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[79]  L. Blonden,et al.  Characterization of the gene encoding human peroxisomal 3-oxoacyl-CoA thiolase (ACAA). No large DNA rearrangement in a thiolase-deficient patient. , 1991, Biochimica et biophysica acta.

[80]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[81]  M. Tuchman,et al.  N-acetylglutamate and its changing role through evolution. , 2003, The Biochemical journal.

[82]  George M. Church,et al.  Filling gaps in a metabolic network using expression information , 2004, ISMB/ECCB.