An elementary model of torus canards.

We study the recently observed phenomena of torus canards. These are a higher-dimensional generalization of the classical canard orbits familiar from planar systems and arise in fast-slow systems of ordinary differential equations in which the fast subsystem contains a saddle-node bifurcation of limit cycles. Torus canards are trajectories that pass near the saddle-node and subsequently spend long times near a repelling branch of slowly varying limit cycles. In this article, we carry out a study of torus canards in an elementary third-order system that consists of a rotated planar system of van der Pol type in which the rotational symmetry is broken by including a phase-dependent term in the slow component of the vector field. In the regime of fast rotation, the torus canards behave much like their planar counterparts. In the regime of slow rotation, the phase dependence creates rich torus canard dynamics and dynamics of mixed mode type. The results of this elementary model provide insight into the torus canards observed in a higher-dimensional neuroscience model.

[1]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[2]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[3]  Bruno Delord,et al.  A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. , 2002, Journal of neurophysiology.

[4]  Andrey Shilnikov,et al.  Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.

[5]  Nancy J Kopell,et al.  New dynamics in cerebellar Purkinje cells: torus canards. , 2008, Physical review letters.

[6]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[7]  J. Grasman,et al.  Co-existence of a limit cycle and an equilibrium in Kaldor's business cycle model and its consequences , 1994 .

[8]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[9]  Ray W Turner,et al.  Firing dynamics of cerebellar purkinje cells. , 2007, Journal of neurophysiology.

[10]  Hendrik Broer,et al.  Nonlinear Dynamical Systems and Chaos , 2013 .

[11]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[12]  Eugene M. Izhikevich,et al.  “Subcritical Elliptic Bursting of Bautin Type ” (Izhikevich (2000b)). The following , 2022 .

[13]  Emmanuel Guigon,et al.  Dendritic signals command firing dynamics in a mathematical model of cerebellar Purkinje cells. , 2010, Biophysical journal.

[14]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[15]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[16]  John Guckenheimer,et al.  Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..

[17]  Marc Diener,et al.  The canard unchainedor how fast/slow dynamical systems bifurcate , 1984 .

[18]  A. Neishtadt,et al.  On stability loss delay for a periodic trajectory , 1996 .

[19]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[20]  J. Callot,et al.  Chasse au canard , 1977 .

[21]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[22]  Bernd Krauskopf,et al.  The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..

[23]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[24]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[25]  Xiao-Jing Wang,et al.  Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle , 1993 .

[26]  Nikolai F. Rulkov,et al.  Subthreshold oscillations in a map-based neuron model , 2004, q-bio/0406007.

[27]  R. Traub,et al.  Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. , 2003, Journal of neurophysiology.

[28]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[29]  Horacio G. Rotstein,et al.  Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky reaction with global feedback , 2003 .

[30]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[31]  Sergey P. Kuznetsov,et al.  A simple autonomous quasiperiodic self-oscillator , 2010 .

[32]  Dana Schlomiuk,et al.  Bifurcations and Periodic Orbits of Vector Fields , 1993 .

[33]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[34]  Eugene M. Izhikevich,et al.  Subcritical Elliptic Bursting of Bautin Type , 1999, SIAM J. Appl. Math..

[35]  V. N. Belykh,et al.  Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models , 2000 .

[36]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[37]  K. Bar-Eli,et al.  Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction , 1991 .

[38]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[39]  D. Terman,et al.  The transition from bursting to continuous spiking in excitable membrane models , 1992 .

[40]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[41]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[42]  Christopher Jones,et al.  Generalized exchange lemmas and orbits heteroclinic to invariant manifolds , 2009 .

[43]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[44]  É. Benoît,et al.  Chasse au canard (première partie) , 1981 .

[45]  É. Benoît Chasse au canard , 1980 .

[46]  Andrey Shilnikov,et al.  Origin of Chaos in a Two-Dimensional Map Modeling Spiking-bursting Neural Activity , 2003, Int. J. Bifurc. Chaos.

[47]  Freddy Dumortier,et al.  Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .

[48]  Bard Ermentrout,et al.  Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..

[49]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.