An elementary model of torus canards.
暂无分享,去创建一个
Mark A Kramer | Anna M. Barry | John Burke | Anna M Barry | Tasso J Kaper | M. Kramer | T. Kaper | J. Burke | G. Benes | G Nicholas Benes | A. Barry
[1] John Guckenheimer,et al. The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..
[2] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[3] Bruno Delord,et al. A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. , 2002, Journal of neurophysiology.
[4] Andrey Shilnikov,et al. Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.
[5] Nancy J Kopell,et al. New dynamics in cerebellar Purkinje cells: torus canards. , 2008, Physical review letters.
[6] Frank C. Hoppensteadt,et al. Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.
[7] J. Grasman,et al. Co-existence of a limit cycle and an equilibrium in Kaldor's business cycle model and its consequences , 1994 .
[8] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[9] Ray W Turner,et al. Firing dynamics of cerebellar purkinje cells. , 2007, Journal of neurophysiology.
[10] Hendrik Broer,et al. Nonlinear Dynamical Systems and Chaos , 2013 .
[11] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[12] Eugene M. Izhikevich,et al. “Subcritical Elliptic Bursting of Bautin Type ” (Izhikevich (2000b)). The following , 2022 .
[13] Emmanuel Guigon,et al. Dendritic signals command firing dynamics in a mathematical model of cerebellar Purkinje cells. , 2010, Biophysical journal.
[14] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[15] M. Krupa,et al. Relaxation Oscillation and Canard Explosion , 2001 .
[16] John Guckenheimer,et al. Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..
[17] Marc Diener,et al. The canard unchainedor how fast/slow dynamical systems bifurcate , 1984 .
[18] A. Neishtadt,et al. On stability loss delay for a periodic trajectory , 1996 .
[19] Martin Krupa,et al. Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .
[20] J. Callot,et al. Chasse au canard , 1977 .
[21] John Guckenheimer,et al. Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..
[22] Bernd Krauskopf,et al. The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..
[23] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[24] Horacio G. Rotstein,et al. Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.
[25] Xiao-Jing Wang,et al. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle , 1993 .
[26] Nikolai F. Rulkov,et al. Subthreshold oscillations in a map-based neuron model , 2004, q-bio/0406007.
[27] R. Traub,et al. Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. , 2003, Journal of neurophysiology.
[28] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[29] Horacio G. Rotstein,et al. Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky reaction with global feedback , 2003 .
[30] A. Neishtadt. The separation of motions in systems with rapidly rotating phase , 1984 .
[31] Sergey P. Kuznetsov,et al. A simple autonomous quasiperiodic self-oscillator , 2010 .
[32] Dana Schlomiuk,et al. Bifurcations and Periodic Orbits of Vector Fields , 1993 .
[33] Wiktor Eckhaus,et al. Relaxation oscillations including a standard chase on French ducks , 1983 .
[34] Eugene M. Izhikevich,et al. Subcritical Elliptic Bursting of Bautin Type , 1999, SIAM J. Appl. Math..
[35] V. N. Belykh,et al. Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models , 2000 .
[36] Freddy Dumortier,et al. Canard Cycles and Center Manifolds , 1996 .
[37] K. Bar-Eli,et al. Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction , 1991 .
[38] P. Szmolyan,et al. Canards in R3 , 2001 .
[39] D. Terman,et al. The transition from bursting to continuous spiking in excitable membrane models , 1992 .
[40] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[41] Horacio G. Rotstein,et al. Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..
[42] Christopher Jones,et al. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds , 2009 .
[43] Peter Szmolyan,et al. Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..
[44] É. Benoît,et al. Chasse au canard (première partie) , 1981 .
[45] É. Benoît. Chasse au canard , 1980 .
[46] Andrey Shilnikov,et al. Origin of Chaos in a Two-Dimensional Map Modeling Spiking-bursting Neural Activity , 2003, Int. J. Bifurc. Chaos.
[47] Freddy Dumortier,et al. Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .
[48] Bard Ermentrout,et al. Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..
[49] J. Lisman. Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.