Orbital stability of Gausson solutions to logarithmic Schr\"odinger equations

In this paper we present a proof of the orbital stability of ground state for logarithmic Schr\"odinger equation in any dimension and under nonradial perturbations.

[1]  A. Haraux Nonlinear evolution equations: Global behavior of solutions , 1981 .

[2]  ON THE STABILITY OF SOLITARY WAVES FOR CLASSICAL SCALAR FIELDS , 1987 .

[3]  T. Cazenave Stable solutions of the logarithmic Schrödinger equation , 1983 .

[4]  J. Shatah Stable standing waves of nonlinear Klein-Gordon equations , 1983 .

[5]  Marco Squassina,et al.  Multiple solutions to logarithmic Schrödinger equations with periodic potential , 2014, 1404.4790.

[6]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[7]  Konstantin G. Zloshchastiev,et al.  Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences , 2009, 0906.4282.

[8]  Hefter,et al.  Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. , 1985, Physical review. A, General physics.

[9]  Marco Squassina,et al.  Fractional logarithmic Schrödinger equations , 2014 .

[10]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[11]  I. Bialynicki-Birula,et al.  Nonlinear Wave Mechanics , 1976 .

[12]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[13]  Jaime Angulo Pava,et al.  Stability of standing waves for logarithmic Schr\"odinger equation with attractive delta potential , 2016, 1605.05372.

[14]  Stability of ground states for nonlinear classical field theories , 1989 .

[15]  Chao Ji,et al.  A logarithmic Schrödinger equation with asymptotic conditions on the potential , 2015, 1510.01132.

[16]  Eugenio Montefusco,et al.  On the logarithmic Schrodinger equation , 2013, 1304.6878.

[17]  C. Godano,et al.  Logarithmic Schrödinger-like equation as a model for magma transport , 2003 .