On Feedback Vertex Set New Measure and New Structures

We study the parameterized complexity of the feedback vertex set problem (fvs) on undirected graphs. We approach the problem by considering a variation of it, the disjoint feedback vertex set problem (disjoint-fvs), which finds a disjoint feedback vertex set of size k when a feedback vertex set of a graph is given. We show that disjoint-fvs admits a small kernel, and can be solved in polynomial time when the graph has a special structure that is closely related to the maximum genus of the graph. We then propose a simple branch-and-search process on disjoint-fvs, and introduce a new branch-and-search measure. The branch-and-search process effectively reduces a given graph to a graph with the special structure, and the new measure more precisely evaluates the efficiency of the branch-and-search process. These algorithmic, combinatorial, and topological structural studies enable us to develop an O(3.83kkn2) time parameterized algorithm for the general fvs problem, improving the previous best algorithm of time O(5kkn2) for the problem.

[1]  Abraham Silberschatz,et al.  Operating System Concepts , 1983 .

[2]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[3]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[4]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[5]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[6]  Igor Razgon Exact Computation of Maximum Induced Forest , 2006, SWAT.

[7]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[8]  Yanpei Liu,et al.  A POLYNOMIAL ALGORITHM FOR FINDING THE MINIMUM FEEDBACK VERTEX SET OF A 3-REGULAR SIMPLE GRAPH 1 , 1999 .

[9]  Jonathan L. Gross,et al.  Finding a maximum-genus graph imbedding , 1988, JACM.

[10]  Fedor V. Fomin,et al.  Finding a Minimum Feedback Vertex Set in Time O (1.7548n) , 2006, IWPEC.

[11]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[12]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[13]  Reuven Bar-Yehuda,et al.  Randomized Algorithms for the Loop Cutset Problem , 2000, J. Artif. Intell. Res..

[14]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[15]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[16]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[17]  Harold N. Gabow,et al.  Efficient Algorithms for Graphic Intersection and Parity (Extended Abstract) , 1985 .

[18]  Peter B. Galvin,et al.  Operating System Concepts, 4th Ed. , 1993 .

[19]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[20]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[21]  Michael J. Pelsmajer,et al.  Parameterized Algorithms for Feedback Vertex Set , 2004, IWPEC.

[22]  Hans L. Bodlaender On Disjoint Cycles , 1994, Int. J. Found. Comput. Sci..

[23]  Matthias F. Stallmann,et al.  Efficient Algorithms for Graphic Matroid Intersection and Parity (Extended Abstract) , 1985, ICALP.

[24]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..