Dynamical effects of calcium‐sensitive potassium currents on voltage and calcium alternans

A mathematical model of a small conductance Ca2+‐activated potassium (SK) channel was developed and incorporated into a physiologically detailed ventricular myocyte model. Ca2+‐sensitive K+ currents promote negative intracellular Ca2+ to membrane voltage (CAi2+→ Vm) coupling. Increase of Ca2+‐sensitive K+ currents can be responsible for electromechanically discordant alternans and quasiperiodic oscillations at the cellular level. At the tissue level, Turing‐type instability can occur when Ca2+‐sensitive K+ currents are increased.

[1]  Zhang Jingwen,et al.  Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels were Negatively Regulated by Captopril in Volume-Overload Heart Failure Rats , 2016, The Journal of Membrane Biology.

[2]  D. Lieu,et al.  Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias. , 2015, Heart rhythm.

[3]  Peng-Sheng Chen,et al.  SK channels and ventricular arrhythmias in heart failure. , 2015, Trends in cardiovascular medicine.

[4]  M. Fishbein,et al.  Small Conductance Calcium-Activated Potassium Current Is Important in Transmural Repolarization of Failing Human Ventricles , 2015, Circulation. Arrhythmia and electrophysiology.

[5]  L. Blatter,et al.  The mechanisms of calcium cycling and action potential dynamics in cardiac alternans. , 2015, Circulation research.

[6]  H. Valdivia Mechanisms of cardiac alternans in atrial cells: intracellular Ca2⁺ disturbances lead the way. , 2015, Circulation research.

[7]  Trine Krogh-Madsen,et al.  Voltage and calcium dynamics both underlie cellular alternans in cardiac myocytes. , 2014, Biophysical journal.

[8]  Donald M Bers,et al.  Optical Mapping of Sarcoplasmic Reticulum Ca2+ in the Intact Heart: Ryanodine Receptor Refractoriness During Alternans and Fibrillation , 2014, Circulation research.

[9]  D. Bers,et al.  Formation of Spatially Discordant Alternans Due to Fluctuations and Diffusion of Calcium , 2013, PloS one.

[10]  J. Weiss,et al.  Apamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. , 2013, Heart rhythm.

[11]  J. Weiss,et al.  Apamin-Sensitive Potassium Current Modulates Action Potential Duration Restitution and Arrhythmogenesis of Failing Rabbit Ventricles , 2013, Circulation. Arrhythmia and electrophysiology.

[12]  B. Nguyen,et al.  Heterogeneous Upregulation of Apamin‐Sensitive Potassium Currents in Failing Human Ventricles , 2013, Journal of the American Heart Association.

[13]  Daisuke Sato,et al.  Cardiac Electrophysiological Dynamics From the Cellular Level to the Organ Level , 2013, Biomedical engineering and computational biology.

[14]  Po-Cheng Chang,et al.  Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium. , 2012, Heart rhythm.

[15]  A. A. Armoundas,et al.  Role of Substrate and Triggers in the Genesis of Cardiac Alternans, From the Myocyte to the Whole Heart: Implications for Therapy , 2012, Circulation.

[16]  A. Garfinkel,et al.  Alternans and Arrhythmias: From Cell to Heart , 2011, Circulation research.

[17]  Zhao Zhang,et al.  Ablation of a Ca2+‐activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation , 2009, The Journal of physiology.

[18]  D. Rosenbaum,et al.  Cellular mechanisms of arrhythmogenic cardiac alternans. , 2008, Progress in biophysics and molecular biology.

[19]  J. Adelman,et al.  Functional Roles of a Ca2+-Activated K+ Channel in Atrioventricular Nodes , 2008, Circulation research.

[20]  J. Restrepo,et al.  A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. , 2007, Biophysical journal.

[21]  A. Garfinkel,et al.  Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans. , 2007, Biophysical journal.

[22]  Ling Lu,et al.  Molecular Coupling of a Ca2+-Activated K+ Channel to L-Type Ca2+ Channels via α-Actinin2 , 2007 .

[23]  D. Rosenbaum,et al.  Cellular Alternans , 2006, Annals of the New York Academy of Sciences.

[24]  Donald M Bers,et al.  Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations , 2006, Circulation research.

[25]  Blas Echebarria,et al.  Amplitude equation approach to spatiotemporal dynamics of cardiac alternans. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  A. Garfinkel,et al.  From Pulsus to Pulseless: The Saga of Cardiac Alternans , 2006, Circulation research.

[27]  A. Garfinkel,et al.  Dynamic origin of spatially discordant alternans in cardiac tissue. , 2006, Biophysical journal.

[28]  Ling Lu,et al.  Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. , 2005, American journal of physiology. Heart and circulatory physiology.

[29]  A. Garfinkel,et al.  Spatially discordant alternans in cardiac tissue: The role of calcium cycling , 2005 .

[30]  A. Karma,et al.  Coupled dynamics of voltage and calcium in paced cardiac cells. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  David S. Rosenbaum,et al.  Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans , 2004, Circulation research.

[32]  A. Garfinkel,et al.  A simulation study of the effects of cardiac anatomy in ventricular fibrillation. , 2004, The Journal of clinical investigation.

[33]  Yi Zhang,et al.  Molecular Identification and Functional Roles of a Ca2+-activated K+ Channel in Human and Mouse Hearts* , 2003, Journal of Biological Chemistry.

[34]  A Garfinkel,et al.  Model of intracellular calcium cycling in ventricular myocytes. , 2003, Biophysical journal.

[35]  D. Rosenbaum,et al.  Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death. , 2003, Cardiovascular research.

[36]  Eberhard Bodenschatz,et al.  Period-doubling instability and memory in cardiac tissue. , 2002, Physical review letters.

[37]  N. Chiamvimonvat,et al.  Presence of a calcium-activated chloride current in mouse ventricular myocytes. , 2002, American journal of physiology. Heart and circulatory physiology.

[38]  Daniel J Gauthier,et al.  Experimental control of cardiac muscle alternans. , 2002, Physical review letters.

[39]  Robert F Gilmour,et al.  Ionic mechanism of electrical alternans. , 2002, American journal of physiology. Heart and circulatory physiology.

[40]  Blas Echebarria,et al.  Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. , 2001, Physical review letters.

[41]  A. Garfinkel,et al.  Preventing ventricular fibrillation by flattening cardiac restitution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A Garfinkel,et al.  Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. , 1999, Biophysical journal.

[43]  A. Garfinkel,et al.  An advanced algorithm for solving partial differential equation in cardiac conduction , 1999, IEEE Transactions on Biomedical Engineering.

[44]  Daniel J. Gauthier,et al.  Prevalence of Rate-Dependent Behaviors in Cardiac Muscle , 1999 .

[45]  D. Rosenbaum,et al.  Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. , 1999, Circulation.

[46]  N. Marrion,et al.  Gating of Recombinant Small-Conductance Ca-activated K+ Channels by Calcium , 1998, The Journal of general physiology.

[47]  R. Gilmour,et al.  Memory and complex dynamics in cardiac Purkinje fibers. , 1997, The American journal of physiology.

[48]  M J Lab,et al.  Electrophysiological alternans and restitution during acute regional ischaemia in myocardium of anaesthetized pig. , 1988, The Journal of physiology.

[49]  J. Nolasco,et al.  A graphic method for the study of alternation in cardiac action potentials. , 1968, Journal of applied physiology.

[50]  D. Lieu,et al.  Small-conductance Ca 2þ -activated K þ channels and cardiac arrhythmias , 2015 .

[51]  Ling Lu,et al.  Molecular Coupling of a Ca 2-Activated K Channel to L-Type Ca 2 Channels via-Actinin 2 , 2006 .

[52]  D. Rubenstein,et al.  Premature beats elicit a phase reversal of mechanoelectrical alternans in cat ventricular myocytes. A possible mechanism for reentrant arrhythmias. , 1995, Circulation.