Multi-scale time-resolved electron diffraction: A case study in moiré materials.

[1]  Syed Ali Hassan,et al.  Direct View of Phonon Dynamics in Atomically Thin MoS2. , 2022, Nano letters.

[2]  Y. Son,et al.  Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices , 2022, Nature Materials.

[3]  W. H. Li,et al.  A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes , 2021, Structural dynamics.

[4]  Maurice Peemen,et al.  Very-High Dynamic Range, 10,000 Frames/Second Pixel Array Detector for Electron Microscopy , 2021, Microscopy and Microanalysis.

[5]  D. Muller,et al.  Extremely anisotropic van der Waals thermal conductors , 2021, Nature.

[6]  A. MacDonald,et al.  The marvels of moiré materials , 2021, Nature Reviews Materials.

[7]  Y. Ping,et al.  High-order superlattices by rolling up van der Waals heterostructures , 2021, Nature.

[8]  Jessica S. Lemos,et al.  Localization of lattice dynamics in low-angle twisted bilayer graphene , 2021, Nature.

[9]  D. Muller,et al.  Electron ptychography achieves atomic-resolution limits set by lattice vibrations , 2021, Science.

[10]  Xiaodong Xu,et al.  Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions , 2020, Nature Materials.

[11]  A. Cavalleri,et al.  Polarizing an antiferromagnet by optical engineering of the crystal field , 2020, Nature Physics.

[12]  A. Chew,et al.  Attosecond science based on high harmonic generation from gases and solids , 2020, Nature Communications.

[13]  T. Martínez,et al.  Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction , 2020, Science.

[14]  Hua Yu,et al.  Precise control of the interlayer twist angle in large scale MoS2 homostructures , 2020, Nature Communications.

[15]  J. Hone,et al.  Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices , 2020, Science.

[16]  J. Hone,et al.  Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe_{2}/WSe_{2} Heterobilayers. , 2020, Physical review letters.

[17]  A. Cavalleri,et al.  Author Correction: Polarizing an antiferromagnet by optical engineering of the crystal field , 2020, Nature Physics.

[18]  Xiaodong Xu,et al.  One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.

[19]  B. Schmitt,et al.  Megapixels @ Megahertz – The AGIPD high-speed cameras for the European XFEL , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[20]  Jan Siegel,et al.  Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials , 2019, Science.

[21]  Su Ji Park,et al.  An ultrafast symmetry switch in a Weyl semimetal , 2019, Nature.

[22]  K. Diederichs,et al.  Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector , 2018, Nature Methods.

[23]  Veit Elser,et al.  Electron ptychography of 2D materials to deep sub-ångström resolution , 2018, Nature.

[24]  E. Kaxiras,et al.  Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene , 2018, Nature Materials.

[25]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[26]  E. Tadmor,et al.  Structural and electron diffraction scaling of twisted graphene bilayers , 2018 .

[27]  Peter Shen,et al.  The 2017 Nobel Prize in Chemistry: cryo-EM comes of age , 2018, Analytical and Bioanalytical Chemistry.

[28]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[29]  M. Taheri,et al.  Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity , 2017, Scientific Reports.

[30]  B. Siwick,et al.  Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization , 2017, Structural dynamics.

[31]  O. Kwon,et al.  Ultrafast electron microscopy integrated with a direct electron detection camera , 2017, Structural dynamics.

[32]  T. Lane,et al.  Femtosecond mega-electron-volt electron microdiffraction. , 2017, Ultramicroscopy.

[33]  J. Joseph,et al.  A direct electron detector for time-resolved MeV electron microscopy. , 2017, The Review of scientific instruments.

[34]  C. Ropers,et al.  Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam. , 2016, Ultramicroscopy.

[35]  Hugh T. Philipp,et al.  High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal , 2016, IEEE Transactions on Nuclear Science.

[36]  M. Tate,et al.  Potential beneficial effects of electron-hole plasmas created in silicon sensors by XFEL-like high intensity pulses for detector development , 2016 .

[37]  T. Baumert,et al.  Complete analysis of a transmission electron diffraction pattern of a MoS2-graphite heterostructure. , 2016, Ultramicroscopy.

[38]  M. Murnane,et al.  Basic Research Needs Workshop on Quantum Materials for Energy Relevant Technology , 2016 .

[39]  R. Coffee,et al.  Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films , 2016 .

[40]  P. Baum,et al.  Signal-to-noise in femtosecond electron diffraction. , 2015, Ultramicroscopy.

[41]  D. Muller,et al.  High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy , 2015, Microscopy and Microanalysis.

[42]  R. Coffee,et al.  Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. , 2015, The Review of scientific instruments.

[43]  B. Siwick,et al.  Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction. , 2014, Physical review letters.

[44]  D. Mihailovic,et al.  Ultrafast Switching to a Stable Hidden Quantum State in an Electronic Crystal , 2014, Science.

[45]  N. Grigorieff,et al.  Quantitative characterization of electron detectors for transmission electron microscopy. , 2013, Journal of structural biology.

[46]  Hugh T. Philipp,et al.  A Medium-Format, Mixed-Mode Pixel Array Detector for Kilohertz X-ray Imaging , 2013 .

[47]  P. Denes,et al.  Neutron and X-ray Detectors , 2012 .

[48]  Matthias Domke,et al.  Ultrafast pump-probe microscopy with high temporal dynamic range. , 2012, Optics express.

[49]  M. C. Hoffmann,et al.  Light-Induced Superconductivity in a Stripe-Ordered Cuprate , 2011, Science.

[50]  L. Vandersypen,et al.  Wedging transfer of nanostructures. , 2010, Nano letters.

[51]  D. Nesbitt,et al.  Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase. , 2008, The Review of scientific instruments.

[52]  R Henderson,et al.  Electronic detectors for electron microscopy. , 2007, Current opinion in structural biology.

[53]  Ahmed H. Zewail,et al.  Nonequilibrium Phase Transitions in Cuprates Observed by Ultrafast Electron Crystallography , 2007, Science.

[54]  David A Muller,et al.  Room design for high-performance electron microscopy. , 2006, Ultramicroscopy.

[55]  Jason R. Dwyer,et al.  An Atomic-Level View of Melting Using Femtosecond Electron Diffraction , 2003, Science.

[56]  E. Eikenberry,et al.  Charge-coupled device area x-ray detectors , 2002 .

[57]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[58]  H Ihee,et al.  Direct imaging of transient molecular structures with ultrafast diffraction. , 2001, Science.

[59]  M H Ellisman,et al.  Digital imaging in transmission electron microscopy , 2000, Journal of microscopy.

[60]  J M Zuo,et al.  Electron detection characteristics of a slow‐scan CCD camera, imaging plates and film, and electron image restoration , 2000, Microscopy research and technique.

[61]  Angus I. Kirkland,et al.  The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection , 1998 .