Optimal Distributed Online Prediction Using Mini-Batches
暂无分享,去创建一个
Ohad Shamir | Ran Gilad-Bachrach | Lin Xiao | Ofer Dekel | O. Dekel | O. Shamir | Ran Gilad-Bachrach | Lin Xiao | Ohad Shamir
[1] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[2] R. Rockafellar,et al. On the interchange of subdifferentiation and conditional expectation for convex functionals , 1982 .
[3] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[4] John N. Tsitsiklis,et al. Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.
[5] John L. Gustafson,et al. Reevaluating Amdahl's law , 1988, CACM.
[6] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[7] R. Wets,et al. Stochastic programming , 1989 .
[8] Marc Teboulle,et al. Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..
[9] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[10] Vivek S. Borkar,et al. Distributed Asynchronous Incremental Subgradient Methods , 2001 .
[11] John C. Platt,et al. Online Bayes Point Machines , 2003, PAKDD.
[12] Martin Zinkevich,et al. Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.
[13] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[14] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[15] Gábor Lugosi,et al. Prediction, learning, and games , 2006 .
[16] R. Rockafellar,et al. Local strong convexity and local Lipschitz continuity of the gradient of convex functions , 2007 .
[17] A. Juditsky,et al. Solving variational inequalities with Stochastic Mirror-Prox algorithm , 2008, 0809.0815.
[18] Yurii Nesterov,et al. Confidence level solutions for stochastic programming , 2000, Autom..
[19] Lin Xiao,et al. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization , 2009, J. Mach. Learn. Res..
[20] John Langford,et al. Slow Learners are Fast , 2009, NIPS.
[21] Peter L. Bartlett,et al. A Stochastic View of Optimal Regret through Minimax Duality , 2009, COLT.
[22] Yurii Nesterov,et al. Primal-dual subgradient methods for convex problems , 2005, Math. Program..
[23] Ambuj Tewari,et al. Stochastic methods for l1 regularized loss minimization , 2009, ICML '09.
[24] Asuman E. Ozdaglar,et al. Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.
[25] Alexander Shapiro,et al. Stochastic Approximation approach to Stochastic Programming , 2013 .
[26] Antonio Alonso Ayuso,et al. Introduction to Stochastic Programming , 2009 .
[27] Yoram Singer,et al. Efficient Online and Batch Learning Using Forward Backward Splitting , 2009, J. Mach. Learn. Res..
[28] James T. Kwok,et al. Accelerated Gradient Methods for Stochastic Optimization and Online Learning , 2009, NIPS.
[29] Alexander J. Smola,et al. Parallelized Stochastic Gradient Descent , 2010, NIPS.
[30] Noah A. Smith,et al. Distributed Asynchronous Online Learning for Natural Language Processing , 2010, CoNLL.
[31] Martin J. Wainwright,et al. Distributed Dual Averaging In Networks , 2010, NIPS.
[32] Renato D. C. Monteiro,et al. Primal-dual first-order methods with $${\mathcal {O}(1/\epsilon)}$$ iteration-complexity for cone programming , 2011, Math. Program..
[33] Guanghui Lan,et al. Primal-dual first-order methods with O (1/e) iteration-complexity for cone programming. , 2011 .
[34] Ohad Shamir,et al. Better Mini-Batch Algorithms via Accelerated Gradient Methods , 2011, NIPS.
[35] Yoram Singer,et al. Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..
[36] Ohad Shamir,et al. Optimal Distributed Online Prediction , 2011, ICML.
[37] Guanghui Lan,et al. An optimal method for stochastic composite optimization , 2011, Mathematical Programming.
[38] Saeed Ghadimi,et al. Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization, II: Shrinking Procedures and Optimal Algorithms , 2013, SIAM J. Optim..