A posteriori error estimation for generalized finite element methods
暂无分享,去创建一个
Ivo Babuška | T. Strouboulis | I. Babuska | T. Strouboulis | Lin Zhang | Lin Zhang | Delin Wang | D. Wang | Delin Wang
[1] I. Babuska,et al. The generalized finite element method , 2001 .
[2] T. Belytschko,et al. MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .
[3] Pedro Díez,et al. Accurate upper and lower error bounds by solving flux-free local problems in “stars” , 2004 .
[4] I. I. Bakelʹman,et al. Geometric Analysis and Nonlinear Partial Differential Equations , 1993 .
[5] I. Babuska,et al. The finite element method and its reliability , 2001 .
[6] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[7] I. Babuska,et al. Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .
[8] Michael Griebel,et al. A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..
[9] Michael Griebel,et al. A Particle-Partition of Unity Method-Part IV: Parallelization , 2003 .
[10] Michael Griebel,et al. Meshfree Methods for Partial Differential Equations , 2002 .
[11] K. Bathe,et al. The method of finite spheres with improved numerical integration , 2001 .
[12] Michael Griebel,et al. A Particle-Partition of Unity Method-Part III: A Multilevel Solver , 2002, SIAM J. Sci. Comput..
[13] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[14] I. Babuska,et al. GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE , 2004 .
[15] I. Babuska,et al. Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .
[16] Fabio Nobile,et al. Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .
[17] Ivo Babuška,et al. p‐version of the generalized FEM using mesh‐based handbooks with applications to multiscale problems , 2004 .
[18] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[19] Ivo Babuska,et al. A Posteriori Estimators for the FEM: Analysis of the Robustness of the Estimators for the Poisson Equation , 2001, Adv. Comput. Math..
[20] J. Oden,et al. H‐p clouds—an h‐p meshless method , 1996 .
[21] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[22] Nils-Erik Wiberg,et al. Patch recovery based on superconvergent derivatives and equilibrium , 1993 .
[23] Anthony T. Patera,et al. A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .
[24] Michael Griebel,et al. A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .
[25] I. Babuska,et al. Finite Element Analysis , 2021 .
[26] I. Babuska,et al. The Partition of Unity Method , 1997 .
[27] N. Wiberg,et al. A posteriori error estimation based on superconvergent derivatives and equilibrium , 1992 .
[28] S. Repin,et al. On two-sided error estimates for approximate solutions of problems in the linear theory of elasticity , 2003 .
[29] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[30] Oden,et al. An h-p adaptive method using clouds , 1996 .