A posteriori error estimation for generalized finite element methods

In this paper we address the problem of a posteriori error estimation for generalized finite element methods based on the partition of unity method. The computational results focus on the question of the reliability of the error estimators and its assessment.

[1]  I. Babuska,et al.  The generalized finite element method , 2001 .

[2]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[3]  Pedro Díez,et al.  Accurate upper and lower error bounds by solving flux-free local problems in “stars” , 2004 .

[4]  I. I. Bakelʹman,et al.  Geometric Analysis and Nonlinear Partial Differential Equations , 1993 .

[5]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[7]  I. Babuska,et al.  Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .

[8]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[9]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part IV: Parallelization , 2003 .

[10]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations , 2002 .

[11]  K. Bathe,et al.  The method of finite spheres with improved numerical integration , 2001 .

[12]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part III: A Multilevel Solver , 2002, SIAM J. Sci. Comput..

[13]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[14]  I. Babuska,et al.  GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE , 2004 .

[15]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[16]  Fabio Nobile,et al.  Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .

[17]  Ivo Babuška,et al.  p‐version of the generalized FEM using mesh‐based handbooks with applications to multiscale problems , 2004 .

[18]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[19]  Ivo Babuska,et al.  A Posteriori Estimators for the FEM: Analysis of the Robustness of the Estimators for the Poisson Equation , 2001, Adv. Comput. Math..

[20]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[21]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[22]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[23]  Anthony T. Patera,et al.  A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .

[24]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[25]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[26]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[27]  N. Wiberg,et al.  A posteriori error estimation based on superconvergent derivatives and equilibrium , 1992 .

[28]  S. Repin,et al.  On two-sided error estimates for approximate solutions of problems in the linear theory of elasticity , 2003 .

[29]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[30]  Oden,et al.  An h-p adaptive method using clouds , 1996 .