The Visual Object Tracking VOT2013 Challenge Results

Visual tracking has attracted a significant attention in the last few decades. The recent surge in the number of publications on tracking-related problems have made it almost impossible to follow the developments in the field. One of the reasons is that there is a lack of commonly accepted annotated data-sets and standardized evaluation protocols that would allow objective comparison of different tracking methods. To address this issue, the Visual Object Tracking (VOT) workshop was organized in conjunction with ICCV2013. Researchers from academia as well as industry were invited to participate in the first VOT2013 challenge which aimed at single-object visual trackers that do not apply pre-learned models of object appearance (model-free). Presented here is the VOT2013 benchmark dataset for evaluation of single-object visual trackers as well as the results obtained by the trackers competing in the challenge. In contrast to related attempts in tracker benchmarking, the dataset is labeled per-frame by visual attributes that indicate occlusion, illumination change, motion change, size change and camera motion, offering a more systematic comparison of the trackers. Furthermore, we have designed an automated system for performing and evaluating the experiments. We present the evaluation protocol of the VOT2013 challenge and the results of a comparison of 27 trackers on the benchmark dataset. The dataset, the evaluation tools and the tracker rankings are publicly available from the challenge website (http://votchallenge.net).

Michael Felsberg | Seunghoon Hong | Bohyung Han | Bo Li | Fahad Shahbaz Khan | Joost van de Weijer | Qingming Huang | Jiri Matas | Shengcai Liao | Yang Li | Thomas Mauthner | Horst Possegger | Horst Bischof | Alfredo Petrosino | Martin Danelljan | Gustav Häger | Roman P. Pflugfelder | Ales Leonardis | Weiyao Lin | Jin Young Choi | Stan Z. Li | Zhen Lei | Kristoffer Öfjäll | Vibhav Vineet | Philip H. S. Torr | Matej Kristan | Jorge Batista | Christophe Garcia | Jianke Zhu | Georg Nebehay | Stefan Duffner | João F. Henriques | Longyin Wen | Jijia Li | Ming-Ming Cheng | Richard Bowden | Lei Qin | Yuankai Qi | Hakki Can Karaimer | Jin-Woo Choi | Kwang Moo Yi | Stuart Golodetz | Karel Lebeda | Amir Saffari | Gustavo Fernández | Luka Cehovin | Tomás Vojír | Simon Hadfield | Alan Lukezic | Sam Hare | Ahmed Salah El-Din | Hyeonseob Nam | Aleksandar Dimitriev | Cherkeng Heng | Mario Edoardo Maresca | Samantha YueYing Lim | Zhi Heng Niu | Dominik Pangersic | Franci Oven | A. Leonardis | Seunghoon Hong | Bohyung Han | Zhen Lei | Longyin Wen | S. Li | M. Felsberg | Martin Danelljan | R. Bowden | Jiri Matas | H. Bischof | Ming-Ming Cheng | Christophe Garcia | S. Duffner | F. Khan | Junge Zhang | Shengcai Liao | Jorge Batista | Bo Li | T. Mauthner | Vibhav Vineet | K. M. Yi | Jianke Zhu | D. Monekosso | M. Kristan | Tomás Vojír | R. Pflugfelder | G. Fernandez | G. Nebehay | Luka Cehovin | A. Soltani-Farani | Ali Zarezade | A. Petrosino | Anthony Milton | B. Bozorgtabar | Cherkeng Heng | M. Maresca | P. Remagnino | Sara Maher | Sébastien Poullot | Gustav Häger | A. Lukežič | Horst Possegger | Hyeonseob Nam | J. Choi | K. Lebeda | Lei Qin | Qingming Huang | Simon Hadfield | S. Golodetz | Yang Li | Yuankai Qi | Weiyao Lin | Amir Saffari | Sam Hare | Juan E. Sala Matas | Jin Gao | Yang Li | Kristoffer Öfjäll | A. Dimitriev | Jijia Li | Jinwoo Choi | Rustam Stolkin | Bo Li | Dominik Pangersic | Franc Oven | Z. Niu | H.R. Rabiee | F. Porikli | Adam Gatt | Michael Felsberg | Jiri Matas | Alfredo Petrosino | Jianke Zhu | Richard Bowden | Ahmad Khajenezhad | Chee Seng Chan | Cherkeng Heng | Dale A. Ward | David A. Kearney | Jingjing Xiao | Junge Zhang | Junliang Xing | Kaiqi Huang | Lijun Cao | Mei Kuan Lim | Mohamed ElHelw | Roland Göcke | Sebastien C. Wong | Shin'ichi Satoh | Weihua Chen | Weiming Hu | Xiaoqin Zhang | Behzad Bozorgtabar

[1]  Andrea Cavallaro,et al.  A Protocol for Evaluating Video Trackers Under Real-World Conditions , 2013, IEEE Transactions on Image Processing.

[2]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[3]  Kyoung Mu Lee,et al.  Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Matej Kristan,et al.  Closed-world tracking of multiple interacting targets for indoor-sports applications , 2009, Comput. Vis. Image Underst..

[5]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[6]  J. Pers,et al.  Multiple interacting targets tracking with application to team sports , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[7]  Hyung Jin Chang,et al.  Initialization-Insensitive Visual Tracking through Voting with Salient Local Features , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  David S. Doermann,et al.  Tools and techniques for video performance evaluation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[9]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Haibin Ling,et al.  Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms , 2013, 2013 IEEE International Conference on Computer Vision.

[11]  Jiri Matas,et al.  The VOT2013 challenge: overview and additional results , 2014 .

[12]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[13]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[14]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Sebastien C. Wong,et al.  Combining online feature selection with adaptive shape estimation , 2010, 2010 25th International Conference of Image and Vision Computing New Zealand.

[16]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[17]  Jason Weston,et al.  Solving multiclass support vector machines with LaRank , 2007, ICML '07.

[18]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[19]  Ann B. Lee,et al.  Treelets--An adaptive multi-scale basis for sparse unordered data , 2007, 0707.0481.

[20]  Yuichi Matsumoto,et al.  Shrink boost for selecting multi-LBP histogram features in object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[22]  Michael Felsberg,et al.  Enhanced Distribution Field Tracking Using Channel Representations , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[23]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[24]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[25]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[26]  Uwe D. Hanebeck,et al.  Template matching using fast normalized cross correlation , 2001, SPIE Defense + Commercial Sensing.

[27]  Chun Chen,et al.  A Convolutional Treelets Binary Feature Approach to Fast Keypoint Recognition , 2012, ECCV.

[28]  Seunghoon Hong,et al.  Orderless Tracking through Model-Averaged Posterior Estimation , 2013, 2013 IEEE International Conference on Computer Vision.

[29]  J.M. Ferryman,et al.  PETS Metrics: On-Line Performance Evaluation Service , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[30]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[31]  Bin Shen,et al.  Online robust image alignment via iterative convex optimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[33]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Shai Avidan,et al.  Coherency Sensitive Hashing , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Ales Leonardis,et al.  Is my new tracker really better than yours? , 2014, IEEE Winter Conference on Applications of Computer Vision.

[36]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[37]  Matej Kristan,et al.  Visual Object Tracking Challenge (VOT2013) Evaluation Kit , 2013 .

[38]  Stefan Duffner,et al.  PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects , 2013, ICCV.

[39]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Ales Leonardis,et al.  Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[42]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[43]  Ales Leonardis,et al.  An Enhanced Adaptive Coupled-Layer LGTracker++ , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[44]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[46]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[47]  Xiaoqin Zhang,et al.  Graph Embedding Based Semi-supervised Discriminative Tracker , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[48]  Seunghoon Hong,et al.  Online Graph-Based Tracking , 2014, ECCV.

[49]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Jin Young Choi,et al.  Visual tracking with dual modeling , 2012, IVCNZ '12.

[51]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[52]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Jiri Matas,et al.  Long-Term Tracking through Failure Cases , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[54]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[55]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Dorothy Ndedi Monekosso,et al.  SwATrack: A Swarm Intelligence-based Abrupt Motion Tracker , 2013, MVA.

[57]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[58]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[60]  Roman P. Pflugfelder,et al.  Consensus-based matching and tracking of keypoints for object tracking , 2014, IEEE Winter Conference on Applications of Computer Vision.

[61]  Jiri Matas,et al.  Robustifying the Flock of Trackers , 2011 .

[62]  Jacques Verly,et al.  The State of the Art in Multiple Object Tracking Under Occlusion in Video Sequences , 2003 .

[63]  L. Gool,et al.  Color features for tracking non-rigid objects , 2003 .

[64]  Geoffrey E. Hinton,et al.  Learning Generative Texture Models with extended Fields-of-Experts , 2009, BMVC.

[65]  Stefano Levialdi,et al.  Image Analysis and Processing , 1987 .

[66]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[67]  Rama Chellappa,et al.  Online Empirical Evaluation of Tracking Algorithms , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[69]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[70]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[71]  Jing Zhang,et al.  Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[73]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[74]  Mohamed ElHelw,et al.  Robust Real-Time Tracking with Diverse Ensembles and Random Projections , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[75]  Alfredo Petrosino,et al.  MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning , 2013, ICIAP.

[76]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[78]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[79]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[80]  D. Comaniciu,et al.  The variable bandwidth mean shift and data-driven scale selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[81]  Christopher O. Jaynes,et al.  An Open Development Environment for Evaluation of Video Surveillance Systems , 2002 .

[82]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[83]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[84]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[85]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[86]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  Stan Z. Li,et al.  Structured Visual Tracking with Dynamic Graph , 2012, ACCV.

[88]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[89]  Ales Leonardis,et al.  A Two-Stage Dynamic Model for Visual Tracking , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[90]  Kaiqi Huang,et al.  An Adaptive Combination of Multiple Features for Robust Tracking in Real Scene , 2013, 2013 IEEE International Conference on Computer Vision Workshops.