From Face Detection to Fractured Reservoir Characterization: Big Data Analytics for Restimulation Candidate Selection

[1]  Farzam Javadpour,et al.  Selection of Candidate Horizontal Wells and Determination of the Optimal Time of Refracturing in Barnett Shale (Johnson County) , 2013 .

[2]  Rajagopal Raghavan,et al.  Fully Coupled Geomechanics and Fluid-Flow Analysis of Wells With Stress-Dependent Permeability , 2000 .

[3]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[4]  Akmal Aulia,et al.  Strategic Well Test Planning Using Random Forest , 2014 .

[5]  B. Rubin,et al.  Accurate Simulation of Non Darcy Flow in Stimulated Fractured Shale Reservoirs , 2010 .

[6]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[7]  Shahab D. Mohaghegh,et al.  Development Of An Intelligent Systems Approach For Restimulation Candidate Selection , 2000 .

[8]  Mukul M. Sharma,et al.  Selecting Candidate Wells for Refracturing Using Production Data , 2011 .

[9]  Christopher R. Clarkson,et al.  Production data analysis of unconventional gas wells: Review of theory and best practices , 2013 .

[10]  Samane Moghadam,et al.  Analysis of Production Data from Fractured Shale Gas Wells , 2010 .

[11]  Viktor K. Prasanna,et al.  Predicting Failures from Oilfield Sensor Data using Time Series Shapelets , 2014 .

[12]  A. Araque-Martinez,et al.  A Systematic Study for Refracturing Modeling Under Different Scenarios In Shale Reservoirs , 2013 .

[13]  Jill Feblowitz,et al.  Analytics in Oil and Gas: The Big Deal About Big Data , 2013 .

[14]  H. Ramakrishnan,et al.  Restimulation: Candidate Selection Methodologies and Treatment Optimization , 2006 .

[15]  D. Seemann,et al.  Improving Reservoir Management through Big Data Technologies , 2013 .

[16]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .