Orbital Evolution of Interplanetary Dust

The two most important dynamical features of the zodiacal cloud are: (i) t he dust bands associated with t he major Hirayama asteroid families, and (ii) the circumsolar ring of dust particles in resonant lock with th e Eart h. Oth er important dynamical features include the offset of th e center of symmetry of th e cloud from the Sun, the radial gradient of the ecliptic polar brightness at th e Earth, and th e warp of th e cloud. The dust bands provide th e st rongest evidence th at a substantial and possibly dominant fraction of the cloud originate s from aster oids. However, the characteristic diameter of these asteroidal particles is probably several hundred microns and the migration of th ese large particles towards th e inner Solar System due to Poynting Robert son light drag and their slow passage through secular resonances at the inner edge of the asteroid belt result s in large increases in th eir eccent ricities and inclinations. Because of these orbital changes, the dividing line between asteroidal and comet ary type orbits in the inner Solar System is probably not sharp, and it may be difficult to distinguish clearly between ast eroidal and cometary particles on dynamical grounds alone.

[1]  H. Zook,et al.  A Solar System dust ring with the Earth as its shepherd , 1988, Nature.

[2]  Robert Jedicke,et al.  Collisional Models and Scaling Laws: A New Interpretation of the Shape of the Main-Belt Asteroid Size Distribution☆ , 1998 .

[3]  Jack Wisdom,et al.  The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem , 1980 .

[4]  S. Dermott,et al.  The Collisional Evolution of the Asteroid Belt and Its Contribution to the Zodiacal Cloud , 1997 .

[5]  H. Zook,et al.  Orbital evolution of dust particles from comets and asteroids , 1992 .

[6]  D. Jewitt KUIPER BELT OBJECTS , 1999 .

[7]  C. Murray,et al.  Dynamics of the Uranian and Saturnian satelite systems: A chaotic route to melting Miranda? , 1988 .

[8]  Richard P. Binzel,et al.  Asteroid collisional history - Effects on sizes and spins , 1989 .

[9]  Gordon J. F. MacDonald,et al.  Glacial Cycles and Astronomical Forcing , 1997 .

[10]  K. Holsapple,et al.  On the fragmentation of asteroids and planetary satellites , 1990 .

[11]  Deep 10 and 18 Micron Imaging of the HR 4796A Circumstellar Disk: Transient Dust Particles and Tentative Evidence for a Brightness Asymmetry , 1999, astro-ph/9909363.

[12]  F. J. Low,et al.  INFRARED CIRRUS - NEW COMPONENTS OF THE EXTENDED INFRARED-EMISSION , 1984 .

[13]  M. Sykes IRAS observations of extended zodiacal structures , 1988 .

[14]  S. Dermott,et al.  Sources and Orbital Evolution of Interplanetary Dust Accreted by Earth , 2001 .

[15]  George W. Wetherill,et al.  The range of validity of the two-body approximation in models of terrestrial planet accumulation: II. Gravitational cross sections and runaway accretion , 1985 .

[16]  Zodiacal emission. III - Dust near the asteroid belt , 1992 .

[17]  Donald J. Kessler,et al.  Derivation of the collision probability between orbiting objects: the lifetimes of jupiter's outer moons , 1981 .

[18]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[19]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[20]  A dissipative mapping technique for integrating interplanetary dust particle orbits , 2002 .

[21]  H. P. Rickman,et al.  Asteroids comets meteors , 1984 .

[22]  E. L. Wright,et al.  Observational confirmation of a circumsolar dust ring by the COBE satellite , 1995, Nature.

[23]  E. Everhart An efficient integrator that uses Gauss-Radau spacings , 1985 .

[24]  Mark V. Sykes,et al.  Cometary dust trails: I. Survey , 1992 .

[25]  P. Artymowicz BETA PICTORIS: An Early Solar System? , 1997 .

[26]  K. Farley,et al.  Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and quaternary climate , 1998 .

[27]  J. Liou,et al.  Signatures of the Giant Planets Imprinted on the Edgeworth-Kuiper Belt Dust Disk , 1999 .

[28]  R. Greenberg,et al.  The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids , 1986 .

[29]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[30]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[31]  D. Patterson,et al.  A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor , 1995, Nature.

[32]  S. Dermott,et al.  A 100,000-year periodicity in the accretion rate of interplanetary dust , 1998, Science.

[33]  B. Gustafson Physics of Zodiacal Dust , 1994 .

[34]  Orbital evolution of dust particles near mean motion resonances with the Earth , 1994 .

[35]  S. Dermott,et al.  The contribution of cometary dust to the zodiacal cloud , 1995 .

[36]  A Physical Model for the IRAS Zodiacal Dust Bands , 1993 .

[37]  S. Dermott,et al.  Accretion of Interplanetary Dust Particles by the Earth , 1998 .

[38]  S. Dermott,et al.  Origin of the ten degree Solar System dust bands , 1997 .

[39]  G. Flynn Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust , 1989 .

[40]  R. Stencel,et al.  Model of a Kuiper Belt Small Grain Population and Resulting Far-Infrared Emission , 1995 .

[41]  Rial Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity , 1999, Science.

[42]  S. Dermott,et al.  Sources of Interplanetary Dust , 1996 .

[43]  S. Dermott,et al.  Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles , 1996 .

[44]  S. Dermott,et al.  Modelling the IRAS solar system dust bands , 1990 .

[45]  S. Dermott,et al.  A circumsolar ring of asteroidal dust in resonant lock with the Earth , 1994, Nature.

[46]  R. Gomes Resonance trapping and evolution of particles subject to poynting-robertson drag: Adiabatic and non-adiabatic approaches , 1995 .

[47]  D. Brownlee,et al.  A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust , 1993, Science.

[48]  B. Schmitz,et al.  Accretion of extraterrestrial matter throughout Earth's history , 2001 .

[49]  S. Dermott,et al.  Dynamical Structure of the Zodiacal Cloud , 1999 .

[50]  S. Stern,et al.  Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30-50 AU Kuiper Gap , 1997 .

[51]  S. Dermott,et al.  An Estimation of the Interstellar Contribution to the Zodiacal Thermal Emission , 1996 .

[52]  J. Burns,et al.  An Analysis of IRAS Solar System Dust Bands , 1985 .

[53]  B. Madore,et al.  Astrophysics with Infrared Surveys: A Prelude to SIRTF , 1999 .

[54]  Joseph A. Burns,et al.  Dynamical Evolution of Main Belt Meteoroids: Numerical Simulations Incorporating Planetary Perturbations and Yarkovsky Thermal Forces , 2000 .

[55]  A mapping method for the gravitational few-body problem with dissipation , 1994, astro-ph/9407052.

[56]  S. Dermott,et al.  Zodiacal Dust Bands , 1994 .

[57]  J. Weiland,et al.  The Three-Dimensional Structure of the Zodiacal Dust Bands , 1997 .

[58]  Kiyotsugu Hirayama,et al.  Groups of asteroids probably of common origin , 1918 .

[59]  H. Zook,et al.  A source for hyperbolic cosmic dust particles , 1975 .

[60]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[61]  G. M. Clemence,et al.  Methods of Celestial Mechanics , 1962 .

[62]  S. Stern Collisional Time Scales in the Kuiper Disk and Their Implications , 1995 .

[63]  S. Dermott,et al.  The impact of IRAS on asteroidal science , 1988 .

[64]  W. Reach Zodiacal emission. II - Dust near ecliptic , 1991 .

[65]  S. Croom Cosmology and large-scale structure from quasar redshift surveys , 1997 .

[66]  B. Zuckerman,et al.  Submillimetre images of dusty debris around nearby stars , 1998, Nature.

[67]  R. Giese,et al.  Three-dimensional models of the zodiacal dust cloud - a comparative study , 1986 .

[68]  Alberto Cellino,et al.  Asteroid Families: Search of a 12,487-Asteroid Sample Using Two Different Clustering Techniques , 1995 .

[69]  D. Davis,et al.  Collisional history of asteroids: Evidence from Vesta and the Hirayama families , 1985 .

[70]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[71]  M. C. Wyatt,et al.  HOW OBSERVATIONS OF CIRCUMSTELLAR DISK ASYMMETRIES CAN REVEAL HIDDEN PLANETS : PERICENTER GLOW AND ITS APPLICATION TO THE HR 4796 DISK , 1999 .

[72]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[73]  T. Gold Resonant orbits of grains and the formation of satellites , 1975 .

[74]  The Size–Frequency Distribution of the Zodiacal Cloud: Evidence from the Solar System Dust Bands , 2000, astro-ph/0005286.

[75]  Donald A. Gurnett,et al.  Micron‐sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments , 1997 .

[76]  H. Aumann,et al.  Early Results from the Infrared Astronomical Satellite , 1984, Science.

[77]  J. Liou,et al.  Comets as a Source of Low Eccentricity and Low Inclination Interplanetary Dust Particles , 1996 .

[78]  J. R. Houck,et al.  Origin of the Solar System dust bands discovered by IRAS , 1984, Nature.

[79]  Mark V. Sykes,et al.  Zodiacal dust bands - Their relation to asteroid families , 1989 .

[80]  A. Mix,et al.  Extraterrestrial 3He as a tracer of marine sediment transport and accumulation , 1996, Nature.

[81]  F. Whipple,et al.  The Poynting-Robertson effect on meteor orbits , 1950 .

[82]  J. L. Weinberg The Zodiacal Light and the Interplanetary Medium , 1967 .

[83]  S. Dermott,et al.  Masses of the satellites of Uranus , 1986, Nature.

[84]  Brian G. Marsden,et al.  Catalog of Cometary Orbits , 1983 .

[85]  Hugo Fechtig,et al.  Collisional balance of the meteoritic complex , 1985 .

[86]  Sylvio Ferraz-Mello,et al.  Capture in Exterior Mean-Motion Resonances Due to Poynting-Robertson Drag , 1994 .