NMR chemical shift calculations within local correlation methods: the GIAO-LMP2 approach

A scheme for the calculation of NMR chemical shifts using local second-order Moller–Plesset (LMP2) perturbation theory together with gauge-including atomic orbitals (GIAOs) is presented. Test calculations on the basis of a preliminary implementation within a conventional GIAO-MP2 code show that the deviations between GIAO-LMP2 and GIAO-MP2 are small, e.g., for 13C typically less than 1 ppm, and that the GIAO-LMP2 approach holds great promise for application to larger molecules.

[1]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[2]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[3]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[4]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[5]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[6]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[7]  J. Gauss,et al.  NON-ABELIAN POINT GROUP SYMMETRY IN DIRECT SECOND-ORDER MANY-BODY PERTURBATION THEORY CALCULATIONS OF NMR CHEMICAL SHIFTS , 1998 .

[8]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[9]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[10]  Richard A. Friesner,et al.  Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields , 1997 .

[11]  Martin Kaupp,et al.  The calculation of 17O chemical shielding in transition metal oxo complexes. I. Comparison of DFT and ab initio approaches, and mechanisms of relativity-induced shielding , 1997 .

[12]  Richard A. Friesner,et al.  Pseudospectral localized generalized Mo/ller–Plesset methods with a generalized valence bond reference wave function: Theory and calculation of conformational energies , 1997 .

[13]  Jürgen Gauss,et al.  Rovibrationally averaged nuclear magnetic shielding tensors calculated at the coupled‐cluster level , 1996 .

[14]  J. Gauss,et al.  CCSD(T) calculation of NMR chemical shifts: consistency of calculated and measured 13C chemical shifts in the 1-cyclopropylcyclopropylidenemethyl cation , 1996 .

[15]  T. Martínez,et al.  LOCAL WEAK PAIRS SPECTRAL AND PSEUDOSPECTRAL SINGLES AND DOUBLES CONFIGURATION INTERACTION , 1996 .

[16]  J. Gauss,et al.  A direct implementation of the GIAO-MBPT(2) method for calculating NMR chemical shifts. Application to the naphthalenium and anthracenium ions , 1996 .

[17]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[18]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[19]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[20]  Richard A. Friesner,et al.  Pseudospectral localized Mo/ller–Plesset methods: Theory and calculation of conformational energies , 1995 .

[21]  J. Gauss,et al.  Accurate computations of 77Se NMR chemical shifts with the GIAO-CCSD method , 1995 .

[22]  W. Kutzelnigg,et al.  Ab Initio Computation of 77Se NMR Chemical Shifts with the IGLO-SCF, the GIAO-SCF, and the GIAO-MP2 Methods , 1995 .

[23]  P. Pulay,et al.  Basis set and correlation effects in the calculation of selenium NMR shieldings , 1994 .

[24]  P. Schleyer,et al.  Cyclopropylcyclopropylidenemethyl Cation: A Unique Stabilized Vinyl Cation Characterized by NMR Spectroscopy and Quantum Chemical ab Initio Calculations , 1994 .

[25]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[26]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[27]  M. Schindler,et al.  Ab initio calculation of magnetic properties by the “direct” IGLO method , 1992 .

[28]  J. Gauss Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .

[29]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[30]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[31]  Aage E. Hansen,et al.  Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors , 1985 .

[32]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[33]  W. Kutzelnigg Theory of Magnetic Susceptibilities and NMR Chemical Shifts in Terms of Localized Quantities , 1982 .

[34]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[35]  W. Niessen,et al.  Density localization of atomic and molecular orbitals , 1973 .

[36]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[37]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[38]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[39]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[40]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .