The equation of state in lattice QCD: with physical quark masses towards the continuum limit

The equation of state of QCD at vanishing chemical potential as a function of temperature is determined for two sets of lattice spacings. Coarser lattices with temporal extension of N_t=4 and finer lattices of N_t=6 are used. Symanzik improved gauge and stout-link improved staggered fermionic actions are applied. The results are given for physical quark masses both for the light quarks and for the strange quark. Pressure, energy density, entropy density, quark number susceptibilities and the speed of sound are presented.

[1]  A. Peikert QCD thermodynamics with 2+1 quark flavours in lattice simulations , 2000 .

[2]  Flavor symmetry restoration and Symanzik improvement for staggered quarks , 1998, hep-lat/9809157.

[3]  D. Toussaint,et al.  Variants of fattening and flavor symmetry restoration , 1999, hep-lat/9903032.

[4]  The pressure in 2, 2+1 and 3 flavour QCD , 2000, hep-lat/0002003.

[5]  M. Fukugita,et al.  22pSC-9 Thermodynamics of SU(3) gauge theory on anisotropic lattices , 2001, hep-lat/0105012.

[6]  F. Karsch,et al.  Quark Mass and Flavour Dependence of the QCD Phase Transition , 2000, hep-lat/0012023.

[7]  David E. Miller,et al.  Non-perturbative thermodynamics of SU(N) gauge theories , 1990 .

[8]  A. Kennedy,et al.  Comparing theR algorithm and RHMC for staggered fermions , 2002, hep-lat/0209035.

[9]  Thomas Lippert,et al.  Observation of string breaking in QCD , 2005 .

[10]  The RHMC algorithm for 2 flavours of dynamical staggered fermions , 2003, hep-lat/0309084.

[11]  E. Laermann,et al.  Thermodynamics of SU(3) lattice gauge theory , 1996 .

[12]  The QCD equation of state at nonzero densities: lattice result , 2002, hep-lat/0208078.

[13]  Equation of state at finite temperature and chemical potential, lattice QCD results , 2004, hep-lat/0401016.

[14]  D. Toussaint,et al.  QCD thermodynamics with three flavors of improved staggered quarks , 2005 .

[15]  M. Fukugita,et al.  Equation of state for pure SU(3) gauge theory with renormalization group improved action , 1999, hep-lat/9905005.

[16]  beta function and equation of state for QCD with two flavors of quarks. , 1994, Physical review. D, Particles and fields.

[17]  The Equation of state for two flavor QCD at N(t) = 6 , 1996, hep-lat/9612025.

[18]  Heinrich Leutwyler,et al.  Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark , 1985 .

[19]  Gottlieb,et al.  Hybrid-molecular-dynamics algorithms for the numerical simulation of quantum chromodynamics. , 1987, Physical review. D, Particles and fields.

[20]  R. Sommer A new way to set the energy scale in lattice gauge theories and its application to the static force and σs in SU (2) Yang-Mills theory , 1994 .

[21]  Colin Morningstar,et al.  Analytic smearing of SU(3) link variables in lattice QCD , 2004 .

[22]  Z. Fodor,et al.  A scalable PC-based parallel computer for lattice QCD , 2002 .

[23]  M. Fukugita,et al.  Equation of state in finite-temperature QCD with two flavors of improved Wilson quarks , 2001, hep-lat/0103028.