Monsters, Metaphors, and Machine Learning

Machine learning (ML) poses complex challenges for user experience (UX) designers. Typically unpredictable and opaque, it may produce unforeseen outcomes detrimental to particular groups or individuals, yet simultaneously promise amazing breakthroughs in areas as diverse as medical diagnosis and universal translation. This results in a polarized view of ML, which is often manifested through a technology-as-monster metaphor. In this paper, we acknowledge the power and potential of this metaphor by resurfacing historic complexities in human-monster relations. We (re)introduce these liminal and ambiguous creatures, and discuss their relation to ML. We offer a background to designers' use of metaphor, and show how the technology-as-monster metaphor can generatively probe and (re)frame the questions ML poses. We illustrate the effectiveness of this approach through a detailed discussion of an early-stage generative design workshop inquiring into ML approaches to supporting student mental health and well-being.

[1]  John Zimmerman,et al.  Vio: a mixed-initiative approach to learning and automating procedural update tasks , 2007, CHI.

[2]  Lucian Leahu,et al.  Ontological Surprises: A Relational Perspective on Machine Learning , 2016, Conference on Designing Interactive Systems.

[3]  Juan Pablo Pardo-Guerra,et al.  DRILLING THROUGH THE ALLEGHENY MOUNTAINS , 2012 .

[4]  Lucas D. Introna Algorithms, Governance, and Governmentality , 2016 .

[5]  Hamid R. Ekbia,et al.  The Theory-Practice Gap as Generative Metaphor , 2018, CHI.

[6]  P. Verbeek COVER STORYBeyond interaction , 2015 .

[7]  Erhard Rahm,et al.  Data Cleaning: Problems and Current Approaches , 2000, IEEE Data Eng. Bull..

[8]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[9]  Wendy E. Mackay,et al.  HCI, natural science and design: a framework for triangulation across disciplines , 1997, DIS '97.

[10]  D. Felton,et al.  Rejecting and Embracing the Monstrous in Ancient Greece and Rome , 2013 .

[11]  Paul Hekkert,et al.  Handle with care! Why and how designers make use of product metaphors , 2015 .

[12]  Norbert Wiener,et al.  God and Golem, inc. : a comment on certain points where cybernetics impinges on religion , 1964 .

[13]  Mike Ananny,et al.  Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability , 2018, New Media Soc..

[14]  Michael Veale,et al.  Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data , 2017, Big Data Soc..

[15]  René F. Kizilcec How Much Information?: Effects of Transparency on Trust in an Algorithmic Interface , 2016, CHI.

[16]  Kim Halskov Madsen,et al.  Breakthrough by Breakdown: Metaphors and Structured Domains , 1988 .

[17]  J. Stoker,et al.  The Department of Health and Human Services. , 1999, Home healthcare nurse.

[18]  Lucy A. Suchman,et al.  Frankenstein's Problem , 2018, IS&O.

[19]  William L. Porter Notes on the inner logic of designing: Two thought-experiments , 1988 .

[20]  Jeffrey Jerome Cohen Monster Culture (Seven Theses) , 2018 .

[21]  Vivian Nutton,et al.  The monstrous races in medieval art and thought , 1982, Medical History.

[22]  Asa Simon Mittman,et al.  Early Modern Past to Postmodern Future: Changing Discourses of Japanese Monsters , 2017 .

[23]  John Zimmerman,et al.  How to support designers in getting hold of the immaterial material of software , 2010, CHI.

[24]  Anna Vallgårda,et al.  Interaction Design as a Bricolage Practice , 2015, TEI.

[25]  T. Fry Becoming Human by Design , 2012 .

[26]  L. Suchman,et al.  Reconstructing Technologies as Social Practice , 1999 .

[27]  Dan Lockton,et al.  Mental landscapes , 2019, Interactions.

[28]  Michel Foucault,et al.  The Order of Things , 2010 .

[29]  Dawn Nafus,et al.  Algorithms as fetish: Faith and possibility in algorithmic work , 2018 .

[30]  Paul N. Bennett,et al.  Will You Accept an Imperfect AI?: Exploring Designs for Adjusting End-user Expectations of AI Systems , 2019, CHI.

[31]  J. Law A Sociology of monsters: Essays on power, technology, and domination , 1991 .

[32]  Donald A. Schön Designing: Rules, types and worlds , 1988 .

[33]  Asa Simon Mittman,et al.  The Ashgate Research Companion to Monsters and the Monstrous , 2012 .

[34]  Louis L. Bucciarelli,et al.  Between thought and object in engineering design , 2002 .

[35]  John C. McCarthy,et al.  Technology as experience , 2004, INTR.

[36]  Christopher T. Lowenkamp,et al.  RISK, RACE, AND RECIDIVISM: PREDICTIVE BIAS AND DISPARATE IMPACT*: RISK, RACE, AND RECIDIVISM , 2016 .

[37]  Catherine Tucker,et al.  Algorithmic bias? An empirical study into apparent gender-based discrimination in the display of STEM career ads , 2019 .

[38]  Debra Higgs Strickland,et al.  Monstrosity and Race in the Late Middle Ages , 2013 .

[39]  S. A. Miller,et al.  Monstrous Sexuality: Variations on the Vagina Dentata , 2013 .

[40]  Kim Halskov,et al.  UX Design Innovation: Challenges for Working with Machine Learning as a Design Material , 2017, CHI.

[41]  Jonathan Grudin,et al.  Achieving Cooperative System Design: Shifting From a Product to a Process Focus , 2017 .

[42]  Kim Halskov,et al.  Designing with Cards , 2016, Collaboration in Creative Design.

[43]  Yasmin Ibrahim The Breastfeeding Controversy and Facebook: Politicization of Image, Privacy and Protest , 2010, Int. J. E Politics.

[44]  Geoffrey C. Bowker,et al.  Enacting silence: Residual categories as a challenge for ethics, information systems, and communication , 2007, Ethics and Information Technology.

[45]  K. Foot,et al.  Media Technologies: Essays on Communication, Materiality, and Society , 2014 .

[46]  Elisa Giaccardi,et al.  Co-performance: Conceptualizing the Role of Artificial Agency in the Design of Everyday Life , 2018, CHI.

[47]  Kim Hammond,et al.  Monsters of modernity: Frankenstein and modern environmentalism , 2004 .

[48]  Gavin Melles,et al.  New Pragmatism and the Vocabulary and Metaphors of Scholarly Design Research , 2008, Design Issues.

[49]  M. Gentzkow,et al.  Social Media and Fake News in the 2016 Election , 2017 .

[50]  Mark W. Newman,et al.  Learning from a learning thermostat: lessons for intelligent systems for the home , 2013, UbiComp.

[51]  Kim Halskov,et al.  A guide to metaphorical design , 1994, CACM.

[52]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[53]  D. Schoen,et al.  The Reflective Practitioner: How Professionals Think in Action , 1985 .

[54]  Kai Kupferschmidt Taming the monsters of tomorrow. , 2018, Science.

[55]  Carsten S. Østerlund,et al.  Living with Monsters? , 2018, IS&O.

[56]  Pd Pierre Lévy,et al.  Designing for Perceptual Crossing: Applying and Evaluating Design Notions , 2012 .

[57]  Mohan S. Kankanhalli,et al.  Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda , 2018, CHI.

[58]  Melvin Kranzberg Technology and History: "Kranzberg's Laws" , 1986 .

[59]  Igor E. Klyukanov,et al.  Beyond the Binary: Toward the Paraconsistencies of Russian Communication Modes , 2016 .

[60]  Daniel P. Compora,et al.  On Monsters: An Unnatural History of Our Worst Fears , 2012 .

[61]  Peter A. Flach,et al.  Machine Learning - The Art and Science of Algorithms that Make Sense of Data , 2012 .

[62]  Gina Neff,et al.  Talking to Bots: Symbiotic Agency and the Case of Tay , 2016 .

[63]  John Zimmerman,et al.  Unremarkable AI: Fitting Intelligent Decision Support into Critical, Clinical Decision-Making Processes , 2019, CHI.

[64]  Tom W. Smith,et al.  ASKING SENSITIVE QUESTIONS THE IMPACT OF DATA COLLECTION MODE, QUESTION FORMAT, AND QUESTION CONTEXT , 1996 .

[65]  Qian Yang,et al.  Designing Theory-Driven User-Centric Explainable AI , 2019, CHI.

[66]  H. Rittel,et al.  Dilemmas in a general theory of planning , 1973 .

[67]  Jakob Arnoldi,et al.  Computer Algorithms, Market Manipulation and the Institutionalization of High Frequency Trading , 2016 .

[68]  Paul Dourish,et al.  The value of data: considering the context of production in data economies , 2011, CSCW.

[69]  Thomas G. Dietterich,et al.  Interacting meaningfully with machine learning systems: Three experiments , 2009, Int. J. Hum. Comput. Stud..

[70]  Patti M. Valkenburg,et al.  The Social Media Disorder Scale , 2016, Comput. Hum. Behav..

[71]  Bryan Lawson,et al.  Computers, words and pictures , 1997 .

[72]  A. L. Samuel,et al.  Some studies in machine learning using the game of checkers. II: recent progress , 1967 .

[73]  Dan Ben-Amos,et al.  The Forest of Symbols : Aspects of Ndembu Ritual , 2017 .

[74]  Jeremy Biles,et al.  Ecce Monstrum: Georges Bataille and the Sacrifice of Form , 2007 .

[75]  Donald J. Treffinger,et al.  Creative Approaches to Problem Solving: A Framework for Innovation and Change , 2010 .

[76]  Sara Jones,et al.  Using Information Visualization to Support Creativity in Service Design Workshops , 2014 .

[77]  Ron Wakkary,et al.  The Magic Machine Workshops: Making Personal Design Knowledge , 2019, CHI.

[78]  Tone Bratteteig,et al.  Does AI make PD obsolete?: exploring challenges from artificial intelligence to participatory design , 2018, PDC.

[79]  Dana Oswald,et al.  Monstrous Gender: Geographies of Ambiguity , 2013 .

[80]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[81]  John Zimmerman,et al.  Video sketches: exploring pervasive computing interaction designs , 2005, IEEE Pervasive Comput..

[82]  Joseph Esmond Riddle A complete English-Latin and Latin-English dictionary : for the use of colleges and schools , .

[83]  Phoebe Sengers,et al.  Freaky: Collaborative Enactments of Emotion , 2015, CSCW Companion.

[84]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[85]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[86]  Mike Ananny,et al.  Toward an Ethics of Algorithms , 2016 .

[87]  David E. Nye,et al.  American Technological Sublime , 1995, IEEE Technology and Society Magazine.

[88]  J. Michael Oakes,et al.  Capturing the social demographics of hidden sexual minorities: An internet study of the transgender population in the United States , 2007 .

[89]  Adrian Snodgrass,et al.  IS DESIGNING HERMENEUTICAL , 1996 .

[90]  J. Söderberg Media Technologies - Essays on Communication, Materiality, and Society , 2014 .

[91]  B Sjögren,et al.  [First time]. , 1984, Jordemodern.

[92]  Abigail Sellen,et al.  Exploring New Metaphors for a Networked World through the File Biography , 2018, CHI.

[93]  Paul N. Bennett,et al.  Guidelines for Human-AI Interaction , 2019, CHI.

[94]  Shoshana Zuboff,et al.  Big other: surveillance capitalism and the prospects of an information civilization , 2015, J. Inf. Technol..

[95]  John Zimmerman,et al.  Mapping Machine Learning Advances from HCI Research to Reveal Starting Places for Design Innovation , 2018, CHI.

[96]  Kim Halskov,et al.  The life cycle of a generative design metaphor , 2018, NordiCHI.

[97]  Morgan G. Ames Deconstructing the algorithmic sublime , 2018, Big Data Soc..

[98]  Alan F. Blackwell,et al.  The reification of metaphor as a design tool , 2006, TCHI.

[99]  L. Winner Autonomous Technology: Technics-out-of-Control as a Theme in Political Thought , 1977 .

[100]  David Damrosch,et al.  Toward a History of World Literature , 2009 .

[101]  Rebecca Lewis Alternative influence: broadcasting the reactionary right on YouTube , 2018 .

[102]  John Zimmerman,et al.  Investigating How Experienced UX Designers Effectively Work with Machine Learning , 2018, Conference on Designing Interactive Systems.

[103]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[104]  Asa Simon Mittman,et al.  Introduction: The Impact of Monsters and Monster Studies , 2013 .

[105]  Victor J. Papanek,et al.  The green imperative : ecology and ethics in design and architecture , 1995 .

[106]  Chet Van Duzer,et al.  Hic sunt dracones: The Geography and Cartography of Monsters , 2013 .

[107]  M. C. Elish,et al.  Situating methods in the magic of Big Data and AI , 2018 .

[108]  Michael Dylan Foster,et al.  Pandemonium and ParadeJapanese Monsters and the Culture of Yokai , 2008 .

[109]  Dan Lockton,et al.  New Metaphors: A Workshop Method for Generating Ideas and Reframing Problems in Design and Beyond , 2019, Creativity & Cognition.

[110]  Eric Ps Baumer,et al.  Toward human-centered algorithm design , 2017 .

[111]  David D. Gilmore,et al.  Monsters: Evil Beings, Mythical Beasts, And All Manner Of Imaginary Terrors , 2002 .

[112]  Catherine E. Tucker,et al.  Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads , 2019, Manag. Sci..

[113]  John Zimmerman,et al.  Planning Adaptive Mobile Experiences When Wireframing , 2016, Conference on Designing Interactive Systems.

[114]  Batya Friedman,et al.  Value-sensitive design , 1996, INTR.

[115]  Pablo J. Boczkowski,et al.  The Relevance of Algorithms , 2013 .

[116]  Paul Dourish,et al.  Algorithms and their others: Algorithmic culture in context , 2016, Big Data Soc..

[117]  J. Overhage,et al.  Sorting Things Out: Classification and Its Consequences , 2001, Annals of Internal Medicine.

[118]  Liam J. Bannon,et al.  Beyond the Interface: Encountering Artifacts in Use , 1989 .

[119]  R.I.A. Mercuri,et al.  Technology as Experience , 2005, IEEE Transactions on Professional Communication.

[120]  Nick Seaver Algorithms as culture: Some tactics for the ethnography of algorithmic systems , 2017, Big Data Soc..

[121]  Graham Dove,et al.  CoDesign with data , 2015 .

[122]  K. Crawford Artificial Intelligence's White Guy Problem , 2016 .

[123]  Andrew D. Selbst,et al.  Big Data's Disparate Impact , 2016 .

[124]  Adrian Mackenzie,et al.  The production of prediction: What does machine learning want? , 2015 .

[125]  David Bawden,et al.  Memory Practices in the Sciences , 2007 .

[126]  S. Olesen,et al.  Technology and History , 2013 .

[127]  Pieter Jan Stappers,et al.  Co-creation and the new landscapes of design , 2008 .

[128]  Donald A. Schön Metaphor and Thought: Generative metaphor: A perspective on problem-setting in social policy , 1993 .

[129]  David E. Nye,et al.  American Technological Sublime , 1995, IEEE technology & society magazine.

[130]  Sarita Albagli,et al.  Memory Practices in the Sciences , 2008 .

[131]  Surekha Davies,et al.  The Unlucky, the Bad and the Ugly: Categories of Monstrosity from the Renaissance to the Enlightenment , 2013 .

[132]  Donna Haraway,et al.  THE PROMISES OF MONSTERS: , 2020 .

[133]  Adrian Bingham,et al.  ‘The monster’? The British popular press and nuclear culture, 1945–early 1960s , 2012, The British Journal for the History of Science.

[134]  Erik Stolterman,et al.  Metaphors, materialities, and affordances : hybrid morphologies in the design of interactive artifacts , 2017 .

[135]  Virpi Roto,et al.  Understanding, scoping and defining user experience: a survey approach , 2009, CHI.

[136]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[137]  Dirk S. Hovorka,et al.  Thinking with Monsters , 2018, IS&O.

[138]  J. Chan,et al.  Algorithmic prediction in policing: assumptions, evaluation, and accountability , 2016 .

[139]  Abigail Sellen,et al.  "Like Having a Really Bad PA": The Gulf between User Expectation and Experience of Conversational Agents , 2016, CHI.

[140]  Alan F. Blackwell,et al.  Interacting with an inferred world: the challenge of machine learning for humane computer interaction , 2015, Aarhus Conference on Critical Alternatives.

[141]  Kim Halskov,et al.  Inspiration card workshops , 2006, DIS '06.

[142]  R. J. Bogumil,et al.  The reflective practitioner: How professionals think in action , 1985, Proceedings of the IEEE.

[143]  Rosemarie Garland-Thomson,et al.  Integrating Disability, Transforming Feminist Theory , 2002, Feminist Theory Reader.