A DNA Integrity Network in the Yeast Saccharomyces cerevisiae

[1]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[2]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[3]  T. Ørntoft,et al.  DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis , 2005, Nature.

[4]  Dimitris Kletsas,et al.  Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions , 2005, Nature.

[5]  Paolo Plevani,et al.  The DNA Damage Checkpoint Response Requires Histone H2B Ubiquitination by Rad6-Bre1 and H3 Methylation by Dot1* , 2005, Journal of Biological Chemistry.

[6]  T. Petes,et al.  Chromosomal Translocations in Yeast Induced by Low Levels of DNA Polymerase A Model for Chromosome Fragile Sites , 2005, Cell.

[7]  R. Kolodner,et al.  A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. , 2005, Molecular cell.

[8]  Ashby J. Morrison,et al.  DNA Repair in the Context of Chromatin , 2005, Cell cycle.

[9]  John R. Yates,et al.  Pheromone-Dependent Destruction of the Tec1 Transcription Factor Is Required for MAP Kinase Signaling Specificity in Yeast , 2004, Cell.

[10]  J. Bader,et al.  A robust toolkit for functional profiling of the yeast genome. , 2004, Molecular cell.

[11]  T. Hughes,et al.  Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Hong Xu,et al.  Mrc1 Is Required for Sister Chromatid Cohesion To Aid in Recombination Repair of Spontaneous Damage , 2004, Molecular and Cellular Biology.

[13]  Mike Tyers,et al.  CDK Activity Antagonizes Whi5, an Inhibitor of G1/S Transcription in Yeast , 2004, Cell.

[14]  Curt Wittenberg,et al.  Cln3 Activates G1-Specific Transcription via Phosphorylation of the SBF Bound Repressor Whi5 , 2004, Cell.

[15]  Grant W. Brown,et al.  Identification of protein complexes required for efficient sister chromatid cohesion. , 2004, Molecular biology of the cell.

[16]  Brian D. Peyser,et al.  S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. , 2004, Molecular biology of the cell.

[17]  Anna Kurlandzka,et al.  Saccharomyces cerevisiae CSM1 gene encoding a protein influencing chromosome segregation in meiosis I interacts with elements of the DNA replication complex. , 2004, Experimental cell research.

[18]  C. E. Caldon,et al.  Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro , 2004, Proteins.

[19]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[20]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[21]  A. Nicolas,et al.  A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Katsuhiko Shirahige,et al.  S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex , 2003, Nature.

[23]  S. Elledge,et al.  Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. , 2003, Genes & development.

[24]  Carl Wu,et al.  Involvement of actin-related proteins in ATP-dependent chromatin remodeling. , 2003, Molecular cell.

[25]  K. P. Rabitsch,et al.  Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. , 2003, Developmental cell.

[26]  A. Grünweller,et al.  A novel yeast silencer. the 2mu origin of Saccharomyces cerevisiae has HST3-, MIG1- and SIR-dependent silencing activity. , 2002, Genetics.

[27]  Kyungjae Myung,et al.  Maintenance of Genome Stability in Saccharomyces cerevisiae , 2002, Science.

[28]  S. Jackson,et al.  Interfaces Between the Detection, Signaling, and Repair of DNA Damage , 2002, Science.

[29]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[30]  Stefan Fritz,et al.  Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. , 2002, Molecular biology of the cell.

[31]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[32]  M. Resnick,et al.  Genes required for ionizing radiation resistance in yeast , 2001, Nature Genetics.

[33]  Stephen J. Elledge,et al.  Mrc1 transduces signals of DNA replication stress to activate Rad53 , 2001, Nature Cell Biology.

[34]  Ronald W. Davis,et al.  A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Kunihiro Matsumoto,et al.  Chl12 (Ctf18) Forms a Novel Replication Factor C-Related Complex and Functions Redundantly with Rad24 in the DNA Replication Checkpoint Pathway , 2001, Molecular and Cellular Biology.

[36]  Agnieszka Sirko,et al.  A Novel Form of Transcriptional Silencing by Sum1-1 Requires Hst1 and the Origin Recognition Complex , 2001, Molecular and Cellular Biology.

[37]  S. Gygi,et al.  Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. , 2001, Molecular cell.

[38]  P. Kaufman,et al.  Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing , 2001, Current Biology.

[39]  R. Kolodner,et al.  Suppression of Spontaneous Chromosomal Rearrangements by S Phase Checkpoint Functions in Saccharomyces cerevisiae , 2001, Cell.

[40]  B. Garvik,et al.  Principles for the buffering of genetic variation. , 2001 .

[41]  E. Foss Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. , 2001, Genetics.

[42]  S. Elledge,et al.  The DNA damage response: putting checkpoints in perspective , 2000, Nature.

[43]  R. Sternglanz,et al.  The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Guarente,et al.  Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase , 2000, Nature.

[45]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[46]  S. Elledge,et al.  The DNA Replication and Damage Checkpoint Pathways Induce Transcription by Inhibition of the Crt1 Repressor , 1998, Cell.

[47]  D. Lalo,et al.  Conversion of a cosubstrate to an inhibitor: phosphorylation mutants of nicotinic acid phosphoribosyltransferase. , 1998, Biochemistry.

[48]  B. Merrill,et al.  The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. , 1998, Genetics.

[49]  J. Boeke,et al.  Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐mediated gene disruption and other applications , 1998, Yeast.

[50]  A. Amon,et al.  Controlling cell cycle and cell fate: common strategies in prokaryotes and eukaryotes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  L. Hartwell,et al.  Integrating genetic approaches into the discovery of anticancer drugs. , 1997, Science.

[52]  M. Boguski,et al.  Genome cross-referencing and XREFdb: Implications for the identification and analysis of genes mutated in human disease , 1997, Nature Genetics.

[53]  Stephen J. Elledge,et al.  Cell Cycle Checkpoints: Preventing an Identity Crisis , 1996, Science.

[54]  J. M. Sherman,et al.  The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. , 1995, Genes & development.

[55]  Grant W. Brown,et al.  Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways , 2004, Nature Biotechnology.

[56]  Charles Boone,et al.  A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. , 2003, Molecular cell.

[57]  Yi Zhang,et al.  Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. , 2003, Molecular cell.

[58]  W. Saunders,et al.  Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. , 2003, Genetics.

[59]  Article number: 2005.0026 , 2022 .