Performance enhancement of linear active electronically scanned arrays by means of MbD-synthesized metalenses

Abstract The key problem of improving the radiation performances or enabling additive functionalities of linear active electronically scanned arrays (AESAs), without increasing the number of radiating elements nor requiring a re-design of the radiators and/or the feeding network, is addressed by means of a suitably formulated Material-by-Design (MbD) approach. The quasi-conformal transformation optics (QCTO) technique and a customized source inversion (SI) strategy are jointly exploited to synthesize enhanced architectures, composed by a metamaterial lens and a tapered version of the original feeding network, able to match the radiation characteristics of significantly larger and/or different (from the original one) apertures. A set of representative benchmark results is reported to assess the effectiveness of the proposed MbD-designed architecture as well as to highlight the existing trade-off between achievable improvements and the complexity of the arising architectural solution.

[1]  N. Kantartzis,et al.  Compact Double-Negative Metamaterials Based on Electric and Magnetic Resonators , 2012, IEEE Antennas and Wireless Propagation Letters.

[2]  A. Massa,et al.  Bayesian Compressive Sampling for Pattern Synthesis With Maximally Sparse Non-Uniform Linear Arrays , 2011, IEEE Transactions on Antennas and Propagation.

[3]  Federico Viani,et al.  System-by-design: A new paradigm for handling design complexity , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[4]  Andrea Massa,et al.  Reconfigurable Electromagnetics Through Metamaterials—A Review , 2015, Proceedings of the IEEE.

[5]  A. Monti,et al.  Overcoming Mutual Blockage Between Neighboring Dipole Antennas Using a Low-Profile Patterned Metasurface , 2012, IEEE Antennas and Wireless Propagation Letters.

[6]  Paolo Rocca,et al.  Time modulated planar arrays - Analysis and optimisation of the sideband radiations , 2010 .

[7]  S. Sajuyigbe,et al.  Design and Analysis of Three-Dimensionalized ELC Metamaterial Unit Cell , 2009, IEEE Antennas and Wireless Propagation Letters.

[8]  Federico Viani,et al.  Synthesis of Multilayer WAIM Coatings for Planar-Phased Arrays Within the System-by-Design Framework , 2015, IEEE Transactions on Antennas and Propagation.

[9]  A. Massa,et al.  ADS-Based Guidelines for Thinned Planar Arrays , 2010, IEEE Transactions on Antennas and Propagation.

[10]  Ares,et al.  Optimizing uniformly excited linear arrays through time modulation , 2004, IEEE Antennas and Wireless Propagation Letters.

[11]  John N. Sahalos,et al.  Design of Large Thinned Arrays Using Different Biogeography-Based Optimization Migration Models , 2016 .

[12]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[13]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[14]  G. K. Mahanti,et al.  Design of Phase-Differentiated Reconfigurable Array Antennas With Minimum Dynamic Range Ratio , 2006, IEEE Antennas and Wireless Propagation Letters.

[15]  Yang Hao,et al.  Quantitative Study of Two Experimental Demonstrations of a Carpet Cloak , 2013, IEEE Antennas and Wireless Propagation Letters.

[16]  E. Moreno,et al.  Planar arrays with square lattices and circular boundaries: sum patterns from distributions with uniform, amplitude or very low dynamic-range ratio , 2001 .

[17]  D. Werner,et al.  Transformation Electromagnetics: An Overview of the Theory and Applications , 2010, IEEE Antennas and Propagation Magazine.

[18]  A. Monti,et al.  Exploiting Intrinsic Dispersion of Metamaterials for Designing Broadband Aperture Antennas: Theory and Experimental Verification , 2016, IEEE Transactions on Antennas and Propagation.

[19]  Raj Mittra,et al.  Evolutionary Algorithms Applied to Antennas and Propagation: A Review of State of the Art , 2016 .

[20]  Faxin Yu,et al.  A metasurface carpet cloak for electromagnetic, acoustic and water waves , 2016, Scientific Reports.

[21]  Y. Hao,et al.  Discrete Coordinate Transformation for Designing All-Dielectric Flat Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[22]  Paolo Rocca,et al.  Reconfigurable Thinning for the Adaptive Control of Linear Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[23]  A. Massa,et al.  Generalized QCTO for Metamaterial-Lens-Coated Conformal Arrays , 2014, IEEE Transactions on Antennas and Propagation.

[24]  Brian A. Slovick,et al.  Angular Resolution Improvement of Infrared Phased-Array Antennas , 2011, IEEE Antennas and Wireless Propagation Letters.

[25]  Yahya Rahmat-Samii,et al.  Antenna Array Developments: A Perspective on the Past, Present and Future , 2015, IEEE Antennas and Propagation Magazine.

[26]  Tommaso Isernia,et al.  Shaped Beam Antenna Synthesis Problems: Feasibility Criteria and New Strategies , 1998 .

[27]  Yang Hao,et al.  Flat Luneburg Lens via Transformation Optics for Directive Antenna Applications , 2014, IEEE Transactions on Antennas and Propagation.

[28]  Jinho Jeong,et al.  Improvement of Noise Performance in Phased-Array Receivers , 2011 .

[29]  A. Massa,et al.  An SbD-QCTO Approach to the Synthesis of Isotropic Metamaterial Lenses , 2014, IEEE Antennas and Wireless Propagation Letters.

[30]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[31]  Toshifumi Moriyama,et al.  On the radiation properties of ADS-thinned dipole arrays , 2014, IEICE Electron. Express.

[32]  A. Toscano,et al.  Broadband Compact Horn Antennas by Using EPS-ENZ Metamaterial Lens , 2013, IEEE Transactions on Antennas and Propagation.

[33]  Ke-song Chen,et al.  Sparse Planar Array Synthesis Using Matrix Enhancement and Matrix Pencil , 2013 .

[34]  Hongsheng Chen,et al.  Hybrid Airy plasmons with dynamically steerable trajectories. , 2016, Nanoscale.

[35]  A. Massa,et al.  Compressive Sensing Pattern Matching Techniques for Synthesizing Planar Sparse Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[36]  Xiang Wan,et al.  A broadband transformation-optics metasurface lens , 2014 .

[37]  Tie Jun Cui,et al.  Manipulating scattering features by metamaterials , 2016 .

[38]  Paolo Rocca,et al.  Unconventional Phased Array Architectures and Design Methodologies—A Review , 2016, Proceedings of the IEEE.

[39]  Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase. , 2016, Advanced materials.

[40]  Paolo Rocca,et al.  Pattern synthesis in time-modulated linear arrays through pulse shifting , 2010 .

[41]  Lian Shen,et al.  Highly Directional Small-Size Antenna Designed with Homogeneous Transformation Optics , 2014 .

[42]  Andrea Massa,et al.  EPJ Applied Metamaterials Special Issue on “Metamaterial-by-Design: Theory, Methods, and Applications to Communications and Sensing” , 2016 .

[43]  F. García-Vidal,et al.  Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities. , 2016, Physical review letters.

[44]  Ruilin Yao,et al.  Gain Improvement in Time-Modulated Linear Arrays Using SPDT Switches , 2012, IEEE Antennas and Wireless Propagation Letters.

[45]  Paolo Rocca,et al.  Compressive Sensing in Electromagnetics - A Review , 2015, IEEE Antennas and Propagation Magazine.

[46]  Alessandro Toscano,et al.  Filtering Chiral Particle for Rotating the Polarization State of Antennas and Waveguides Components , 2017, IEEE Transactions on Antennas and Propagation.

[47]  Alessandro Toscano,et al.  Dual-Polarized Reduction of Dipole Antenna Blockage Using Mantle Cloaks , 2015, IEEE Transactions on Antennas and Propagation.

[48]  A. Monti,et al.  Design of a Non-Foster Actively Loaded SRR and Application in Metamaterial-Inspired Components , 2013, IEEE Transactions on Antennas and Propagation.

[49]  P. Rocca,et al.  Differential Evolution as Applied to Electromagnetics , 2011, IEEE Antennas and Propagation Magazine.

[50]  Alessandro Toscano,et al.  Controlling Scattering and Absorption With Metamaterial Covers , 2014, IEEE Transactions on Antennas and Propagation.

[51]  Jianjun Gao,et al.  Gain Enhancement of Printed Log-Periodic Dipole Array Antenna Using Director Cell , 2014, IEEE Transactions on Antennas and Propagation.

[52]  Douglas H. Werner,et al.  Transformation Electromagnetics and Metamaterials : fundamental principles and applications , 2014 .

[53]  Alessandro Toscano,et al.  Anisotropic Mantle Cloaks for TM and TE Scattering Reduction , 2015, IEEE Transactions on Antennas and Propagation.

[54]  Andrea Massa,et al.  Array Miniaturization Through QCTO-SI Metamaterial Radomes , 2015, IEEE Transactions on Antennas and Propagation.

[55]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[56]  John Hunt,et al.  Broadband Wide Angle Lens Implemented with Dielectric Metamaterials , 2011, Sensors.

[57]  Paolo Rocca,et al.  Instantaneous directivity optimisation in time-modulated array receivers , 2012 .

[58]  Helen K. Pan,et al.  ENHANCING THE DIRECTIVITY OF PHASED ARRAY ANTENNAS USING LENS-ARRAYS , 2013 .

[59]  A. Massa,et al.  Transformation Electromagnetics Miniaturization of Sectoral and Conical Metamaterial-Enhanced Horn Antennas , 2016, IEEE Transactions on Antennas and Propagation.

[60]  Do-Hoon Kwon,et al.  Quasi-Conformal Transformation Optics Lenses for Conformal Arrays , 2012, IEEE Antennas and Wireless Propagation Letters.

[61]  Alessandro Toscano,et al.  Nonreciprocal Horn Antennas Using Angular Momentum-Biased Metamaterial Inclusions , 2015, IEEE Transactions on Antennas and Propagation.

[62]  Alessandro Toscano,et al.  Multiband and Wideband Bilayer Mantle Cloaks , 2015, IEEE Transactions on Antennas and Propagation.

[63]  D. Grojo,et al.  Accessing Extreme Spatiotemporal Localization of High-Power Laser Radiation through Transformation Optics and Scalar Wave Equations. , 2016, Physical review letters.