Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models

In this article, quantile regression methods are suggested for a class of smooth coefficient time series models. We use both local polynomial and local constant fitting schemes to estimate the smooth coefficients in a quantile framework. We establish the asymptotic properties of both the local polynomial and local constant estimators for α-mixing time series. Also, a bandwidth selector based on the nonparametric version of the Akaike information criterion is suggested, together with a consistent estimate of the asymptotic covariance matrix. Furthermore, the asymptotic behaviors of the estimators at boundaries are examined. A comparison of the local polynomial quantile estimator with the local constant estimator is presented. A simulation study is carried out to illustrate the performance of estimates. An empirical application of the model to real data further demonstrates the potential of the proposed modeling procedures.

[1]  Zongwu Cai,et al.  Trending time-varying coefficient time series models with serially correlated errors , 2007 .

[2]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[3]  H. Muller,et al.  Inference for covariate adjusted regression via varying coefficient models , 2006, math/0607010.

[4]  Eric R. Ziegel,et al.  Analysis of Financial Time Series , 2002, Technometrics.

[5]  Damla Şentürk,et al.  Inference for covariate adjusted regression via varying coefficient models , 2006 .

[6]  Jianqing Fan,et al.  Adaptive varying co-efficient linear models , 2003 .

[7]  J. Ou Evaluating predictive performance of value-at-risk models in Chinese stock markets , 2007 .

[8]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[9]  D. Tjøstheim,et al.  Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.

[10]  A. Gallant,et al.  On Fitting A Recalcitrant Series: The Pound/Dollar Exchange Rate, 1974- 83 , 1988 .

[11]  D. Bunn,et al.  A Quantile Regression Approach to Generating Prediction Intervals , 1999 .

[12]  Zudi Lu,et al.  Local Linear Additive Quantile Regression , 2004 .

[13]  Zongwu Cai,et al.  Adaptive varying‐coefficient linear models , 2000 .

[14]  Zongwu Cai A two–stage approach to additive time series models , 2002 .

[15]  Roger Koenker,et al.  Conditional Quantile Estimation and Inference for Arch Models , 1996, Econometric Theory.

[16]  Pin T. Ng,et al.  Quantile splines with several covariates , 1999 .

[17]  Vincent N. LaRiccia,et al.  Smoothing Parameter Selection , 2009 .

[18]  Otis W. Gilley,et al.  On the Harrison and Rubinfeld Data , 1996 .

[19]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[20]  D. Tjøstheim,et al.  Identification of nonlinear time series: First order characterization and order determination , 1990 .

[21]  R. Koenker Confidence Intervals for Regression Quantiles , 1994 .

[22]  R. Tsay Extreme Values, Quantile Estimation, and Value at Risk , 2003 .

[23]  C. Granger,et al.  Interval forecasting. An analysis based upon ARCH-quantile estimators , 1989 .

[24]  H. An,et al.  A note on the ergodicity of non-linear autoregressive model , 1997 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  Kevin Q. Wang Asset Pricing with Conditioning Information: A New Test , 2003 .

[27]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[28]  Exchange Rate Volatility, Trade, and Capital Flows under Alternative Exchange Rate Regimes , 2000 .

[29]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[30]  Jana Jurečková,et al.  Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model , 1977 .

[31]  Stephen Portnoy,et al.  Some asymptotic results on bivariate quantile splines , 2000 .

[32]  Roger Koenker,et al.  Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics , 2000 .

[33]  David Ruppert,et al.  A Fully Automated Bandwidth Selection Method for Fitting Additive Models , 1998 .

[34]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[35]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .

[36]  Jianqing Fan,et al.  Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems , 1996 .

[37]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[38]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[39]  Jeffrey S. Racine,et al.  Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data , 2008 .

[40]  Takatoshi Ito,et al.  Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market , 1988 .

[41]  Zudi Lu ON THE GEOMETRIC ERGODICITY OF A NON-LINEAR AUTOREGRESSIVE MODEL WITH AN AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC TERM , 1998 .

[42]  H. An,et al.  The geometrical ergodicity of nonlinear autoregressive models , 1996 .

[43]  Elias Masry,et al.  NONPARAMETRIC ESTIMATION OF ADDITIVE NONLINEAR ARX TIME SERIES: LOCAL LINEAR FITTING AND PROJECTIONS , 2000, Econometric Theory.

[44]  Zongwu Cai,et al.  REGRESSION QUANTILES FOR TIME SERIES , 2002, Econometric Theory.

[45]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[46]  Otis W. Gilley,et al.  Using the Spatial Configuration of the Data to Improve Estimation , 1997 .

[47]  Yong Bao,et al.  Evaluating Predictive Performance of Value-at-Risk Models in Emerging Markets: A Reality Check , 2006 .

[48]  Toshio Honda,et al.  Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes , 2000 .

[49]  Xuming He,et al.  Conditional growth charts , 2006 .

[50]  R. Koenker,et al.  Pessimistic Portfolio Allocation and Choquet Expected Utility , 2004 .

[51]  Tae-Hwy Lee,et al.  INFERENCE ON VIA GENERALIZED SPECTRUM AND NONLINEAR TIME SERIES MODELS , 2003 .

[52]  C. Withers Conditions for linear processes to be strong-mixing , 1981 .

[53]  Dag Tjøstheim,et al.  Additive Nonlinear ARX Time Series and Projection Estimates , 1997, Econometric Theory.

[54]  R. Koenker,et al.  Quantile regression methods for reference growth charts , 2006, Statistics in medicine.

[55]  Zongwu Cai,et al.  Application of a local linear autoregressive model to BOD time series , 2000 .

[56]  R. Koenker,et al.  Regression Quantiles , 2007 .

[57]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[58]  Damla Şentürk,et al.  Covariate Adjusted Correlation Analysis via Varying Coefficient Models , 2005 .

[59]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[60]  Quantile Regression in a Varying Coefficient Model , 2003 .

[61]  T J Cole,et al.  Growth charts for both cross-sectional and longitudinal data. , 1994, Statistics in medicine.

[62]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[63]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[64]  Dawit Zerom,et al.  On Additive Conditional Quantiles With High-Dimensional Covariates , 2003 .

[65]  V. V. Gorodetskii,et al.  On the Strong Mixing Property for Linear Sequences , 1978 .

[66]  José A.F. Machado,et al.  Robust Model Selection and M-Estimation , 1993, Econometric Theory.

[67]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[68]  B. LeBaron Technical Trading Rules and Regime Shifts in Foreign Exchange , 1991 .

[69]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[70]  Stephen Portnoy,et al.  Bivariate quantile smoothing splines , 1998 .

[71]  M. C. Jones,et al.  Local Linear Quantile Regression , 1998 .

[72]  S. Portnoy,et al.  Direct use of regression quantiles to construct confidence sets in linear models , 1996 .

[73]  Toshio Honda,et al.  Quantile regression in varying coefficient models , 2004 .

[74]  R. Koenker,et al.  Conditional Quantile Estimation for GARCH Models , 2009 .

[75]  Tae-Hwy Lee,et al.  Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models , 2004, Review of Economics and Statistics.

[76]  Mi-Ok Kim,et al.  Quantile regression with varying coefficients , 2007, 0708.0471.

[77]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[78]  B. LeBaron Technical Trading Rule Profitability and Foreign Exchange Intervention , 1996 .

[79]  Joel L. Horowitz,et al.  Nonparametric Estimation of an Additive Quantile Regression Model , 2004 .

[80]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[81]  Jianqing Fan,et al.  Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .

[82]  R. Koenker,et al.  Unit Root Quantile Autoregression Inference , 2004 .