Improved Halton sequences and discrepancy bounds
暂无分享,去创建一个
[1] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[2] Peter Kritzer,et al. Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences , 2006, J. Complex..
[3] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[4] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[5] Christiane Lemieux,et al. New Perspectives on (0,s)-Sequences , 2009 .
[6] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[7] Emanouil I. Atanassov,et al. Generating and Testing the Modified Halton Sequences , 2002, Numerical Methods and Application.
[8] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[9] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[10] H. Faure. Good permutations for extreme discrepancy , 1992 .
[11] Wolfgang Ch. Schmid,et al. MinT: A Database for Optimal Net Parameters , 2006 .
[12] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[13] Christiane Lemieux,et al. Generalized Halton sequences in 2008: A comparative study , 2009, TOMC.
[14] R. Cools,et al. Good permutations for deterministic scrambled Halton sequences in terms of L2-discrepancy , 2006 .
[15] W. J. Whiten,et al. Computational investigations of low-discrepancy sequences , 1997, TOMS.
[16] H. G. Meijer,et al. The Discrepancy of a G-Adic Sequence , 1968 .
[17] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[18] H. Faure,et al. On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .
[19] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[20] Isao Kiuchi,et al. Mean value results for the approximate functional equation of the square of the Riemann zeta-function , 1992 .
[21] Shu Tezuka,et al. Polynomial arithmetic analogue of Halton sequences , 1993, TOMC.
[22] H. Faure,et al. Selection Criteria for (Random) Generation of Digital (0,s)-Sequences , 2006 .
[23] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .