SYMBOLIC PROGRAMMING OF A GRAPH-THEORETIC APPROACH TO FLEXIBLE MULTIBODY DYNAMICS*

ABSTRACT A dynamic formulation for multibody systems of rigid bodies and elastic beams has been implemented using a commercial symbolic manipulation language, Maple. The formulation is unique in that it combines linear graph theory with kinematics and the principle of virtual work. Symbolic equations in joint and elastic coordinates are automatically generated by our Maple algorithms, called DynaFlex, given only a description of the system as input. Two examples are presented to demonstrate some of the advantages offered by a computer algebra implementation of a multibody formulation. *Communicated by E. Zahariev.

[1]  B. Anderson,et al.  Analysis of discrete physical systems , 1967, IEEE Transactions on Automatic Control.

[2]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[3]  A. Shabana,et al.  Dynamic Analysis of Constrained System of Rigid and Flexible Bodies With Intermittent Motion , 1986 .

[4]  J. B. Jonker A finite element dynamic analysis of spatial mechanisms with flexible links , 1989 .

[5]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[6]  Olof Friberg,et al.  Computer aided kinematics and dynamics of mechanical systems, by E. J. Haug, Allyn and Bacon, Boston, 1989. No. of pages: 511. Price: £47.10 (hardback), ISBN 0-205-11669-8; £18.95 (international student edition), ISBN 0-205-12097-0 , 1990 .

[7]  Michael W. Sayers,et al.  Symbolic computer language for multibody systems , 1991 .

[8]  J. Lieh An Alternative Method for Formulating Closed-Form Dynamics for Elastic Mechanical Systems Using Symbolic Process* , 1992 .

[9]  J. Wittenburg,et al.  Symbolical Programming in System Dynamics , 1993 .

[10]  Manuel S. Pereira,et al.  Computer-Aided Analysis of Rigid and Flexible Mechanical Systems , 1994 .

[11]  D. Bestle,et al.  Automated approach for optimizing dynamic systems , 1994 .

[12]  Werner Schiehlen,et al.  Symbolic computations in multibody systems , 1994 .

[13]  Peter C. Müller,et al.  An approach to automatic generation of dynamic equations of elastic joint manipulators in symbolic language , 1995, J. Intell. Robotic Syst..

[14]  A. G. Lynch,et al.  A Symbolic Formulation for Linearization of Multibody Equations of Motion , 1995 .

[15]  Gilmer L. Blankenship,et al.  Symbolic construction of models for multibody dynamics , 1995, IEEE Trans. Robotics Autom..

[16]  I. Sharf,et al.  Simulation of Flexible-Link Manipulators With Inertial and Geometric Nonlinearities , 1995 .

[17]  John McPhee,et al.  On the use of linear graph theory in multibody system dynamics , 1996 .

[18]  Imtiaz Haque,et al.  Symbolic equations of motion for hybrid multibody systems using a matrix—vector formulation , 1997 .

[19]  J. C. Samin,et al.  The benefits of symbolic generation in modelling, identifying and simulating multibody systems , 1997 .

[20]  Manfred Hiller,et al.  Symbolic Processing of Multiloop Mechanism Dynamics Using Closed-Form Kinematics Solutions , 1997 .

[21]  O. M. Oshinowo,et al.  Object-oriented implementation of a graph-theoretic formulation for planar multibody dynamics , 1997 .

[22]  Ettore Pennestrì SymDyn- A Maple program for multibody dynamics simulation , 1998 .

[23]  Miomir Vukobratovic,et al.  Generation of dynamic models of complex robotic mechanisms in symbolic form , 1998, Robotica.

[24]  Evtim Zakhariev,et al.  Nonlinear Dynamic Motion Optimization and Control of Multibody Systems , 1998 .

[25]  Peter I. Corke,et al.  A symbolic and numeric procedure for manipulator rigid-body dynamic significance analysis and simplification , 1998, Robotica.

[26]  J.-C. Piedboef Recursive Modeling of Serial Flexible Manipulators , 1998 .

[27]  J. McPhee Automatic generation of motion equations for planar mechanical systems using the new set of “branch coordinates” , 1998 .

[28]  David G. Beale,et al.  A General Method for Estimating Dynamic Parameters of Spatial Mechanisms , 1998 .

[29]  M. Wester Computer algebra systems: a practical guide , 1999 .

[30]  P. Fisette,et al.  A Fully Symbolic Model of Multibody Systems Containing Flexible Plates , 1999 .

[31]  D. Lovekin,et al.  DESIGN AND ANALYSIS OF A FACILITY FOR FREE – FLOATING FLEXIBLE ROBOTIC MANIPULATORS , 2000 .

[32]  Edwin Kreuzer Computerized Symbolic Manipulation in Mechanics , 2000 .

[33]  J. McPhee,et al.  Dynamics of Flexible Multibody Systems Using Virtual Work and Linear Graph Theory , 2000 .

[34]  J. McPhee,et al.  POLYNOMIAL SHAPE FUNCTIONS AND NUMERICAL METHODS FOR FLEXIBLE MULTIBODY DYNAMICS* , 2001 .

[35]  G. R. Heppler,et al.  A Deformation Field for Euler–Bernoulli Beams with Applications to Flexible Multibody Dynamics , 2001 .

[36]  John McPhee,et al.  Dynamic Modelling of Electromechanical Multibody Systems , 2003 .