Statics and Dynamics of Continuum Robots Based on Cosserat Rods and Optimal Control Theories

This article explores the relationship between optimal control and Cosserat beam theory from the perspective of solving the forward and inverse dynamics (and statics as a subcase) of continuous manipulators and snake-like bioinspired locomotors. By invoking the principle of minimum potential energy and the Gauss principle of least constraint, it is shown that the quasi-static and dynamic evolutions of these robots are the solutions of optimal control problems in the space variable, which can be solved at each step (of loading or time) of a simulation with the shooting method. In addition to offering an alternative viewpoint on several simulation approaches proposed in the recent past, the optimal control viewpoint allows us to improve some of them while providing a better understanding of their numerical properties. The approach and its properties are illustrated through a set of numerical examples validated against a reference simulator.

[1]  Akio Ishiguro,et al.  Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing , 2021, Science Robotics.

[2]  Vincent Lebastard,et al.  Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach , 2021, IEEE Transactions on Robotics.

[3]  John Till,et al.  Real-time dynamics of soft and continuum robots based on Cosserat rod models , 2019, Int. J. Robotics Res..

[4]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[5]  Lakmal Seneviratne,et al.  Screw-Based Modeling of Soft Manipulators With Tendon and Fluidic Actuation , 2017 .

[6]  D. Caleb Rucker,et al.  Elastic Stability of Cosserat Rods and Parallel Continuum Robots , 2017, IEEE Transactions on Robotics.

[7]  Frédéric Boyer,et al.  Poincaré’s Equations for Cosserat Media: Application to Shells , 2017, J. Nonlinear Sci..

[8]  Frank Chongwoo Park,et al.  Elastic Stability of Concentric Tube Robots Subject to External Loads , 2016, IEEE Transactions on Biomedical Engineering.

[9]  Daniela Rus,et al.  Design, kinematics, and control of a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[10]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[11]  Alberto Cardona,et al.  Time integration of the equations of motion in mechanism analysis , 2014 .

[12]  Matteo Cianchetti,et al.  Dynamic Model of a Multibending Soft Robot Arm Driven by Cables , 2014, IEEE Transactions on Robotics.

[13]  Timothy Bretl,et al.  Quasi-static manipulation of a Kirchhoff elastic rod based on a geometric analysis of equilibrium configurations , 2014, Int. J. Robotics Res..

[14]  Frédéric Boyer,et al.  Macrocontinuous Dynamics for Hyperredundant Robots: Application to Kinematic Locomotion Bioinspired by Elongated Body Animals , 2012, IEEE Transactions on Robotics.

[15]  D. Caleb Rucker,et al.  Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading , 2011, IEEE Transactions on Robotics.

[16]  O. O’Reilly,et al.  On Stability Analyses of Three Classical Buckling Problems for the Elastic Strut , 2011 .

[17]  A. Cohen,et al.  Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming , 2010, Proceedings of the National Academy of Sciences.

[18]  D. Caleb Rucker,et al.  A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots , 2010, IEEE Transactions on Robotics.

[19]  Pierre E. Dupont,et al.  Design and Control of Concentric-Tube Robots , 2010, IEEE Transactions on Robotics.

[20]  Frédéric Boyer,et al.  Poincaré–Cosserat Equations for the Lighthill Three-dimensional Large Amplitude Elongated Body Theory: Application to Robotics , 2010, J. Nonlinear Sci..

[21]  Frédéric Boyer,et al.  Fast Dynamics of an Eel-Like Robot—Comparisons With Navier–Stokes Simulations , 2008, IEEE Transactions on Robotics.

[22]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[23]  Christopher D. Rahn,et al.  Geometrically Exact Models for Soft Robotic Manipulators , 2008, IEEE Transactions on Robotics.

[24]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[25]  Frédéric Boyer,et al.  Macro-continuous computed torque algorithm for a three-dimensional eel-like robot , 2006, IEEE Transactions on Robotics.

[26]  Hidefumi Wakamatsu,et al.  Knotting/Unknotting Manipulation of Deformable Linear Objects , 2006, Int. J. Robotics Res..

[27]  David B. Doman,et al.  A modified simple shooting method for solving two-point boundary-value problems , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[28]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[29]  V. Jurdjevic NON-EUCLIDEAN ELASTICA , 1995 .

[30]  S. Sastry,et al.  Optimal path planning on matrix Lie groups , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[31]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[32]  J. J. Burgess,et al.  Bending Stiffness In A Simulation Of Undersea Cable Deployment , 1993 .

[33]  Christopher J. Damaren,et al.  The relationship between recursive multibody dynamics and discrete-time optimal control , 1991, IEEE Trans. Robotics Autom..

[34]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[35]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[36]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[37]  M. Lighthill Aquatic animal propulsion of high hydromechanical efficiency , 1970, Journal of Fluid Mechanics.

[38]  B. Goh Necessary Conditions for Singular Extremals Involving Multiple Control Variables , 1966 .

[39]  J. Gibbs On the Fundamental Formulae of Dynamics , 1879 .

[40]  Anja Vogler,et al.  Lectures On The Calculus Of Variations , 2016 .

[41]  C. Marle,et al.  "Sur une forme nouvelle des ´ equations de la M´ ecanique" , 2013 .

[42]  Anil V. Rao,et al.  ( Preprint ) AAS 09-334 A SURVEY OF NUMERICAL METHODS FOR OPTIMAL CONTROL , 2009 .

[43]  Yang Sun,et al.  Modelling and simulation of low-tension oceanic cable/body deployment , 1996 .

[44]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[45]  P. Appell Sur une forme générale des équations de la dynamique. , 1900 .

[46]  C. F. Gauss,et al.  Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .