Low-complexity sequential lossless coding for piecewise-stationary memoryless sources

Three strongly sequential, lossless compression schemes, one with linearly growing per-letter computational complexity, and two with fixed per-letter complexity, are presented and analyzed for memoryless sources with abruptly changing statistics. The first method, which improves on Willems' (1994) weighting approach, asymptotically achieves a lower bound on the redundancy, and hence is optimal. The second scheme achieves redundancy of O(log N/N) when the transitions in the statistics are large, and O (log log N/log N) otherwise. The third approach always achieves redundancy of O (/spl radic/log N/N). Obviously, the two fixed complexity approaches can be easily combined to achieve the better redundancy between the two. Simulation results support the analytical bounds derived for all the coding schemes.

[1]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[2]  Neri Merhav,et al.  On the minimum description length principle for sources with piecewise constant parameters , 1993, IEEE Trans. Inf. Theory.

[3]  Guy Louchard,et al.  Average redundancy rate of the Lempel-Ziv code , 1996, Proceedings of Data Compression Conference - DCC '96.

[4]  F. Willems,et al.  Live-and-die coding for binary piecewise i.i.d. sources , 1997, Proceedings of IEEE International Symposium on Information Theory.

[5]  Frans M. J. Willems,et al.  Coding for a binary independent piecewise-identically-distributed source , 1996, IEEE Trans. Inf. Theory.

[6]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[7]  Robert G. Gallager,et al.  Variations on a theme by Huffman , 1978, IEEE Trans. Inf. Theory.

[8]  Neri Merhav,et al.  A strong version of the redundancy-capacity theorem of universal coding , 1995, IEEE Trans. Inf. Theory.

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Raphail E. Krichevsky,et al.  The performance of universal encoding , 1981, IEEE Trans. Inf. Theory.

[11]  Y. Shtarkov,et al.  Multialphabet universal coding of memoryless sources , 1995 .

[12]  Michael Gutman,et al.  Asymptotically optimal classification for multiple tests with empirically observed statistics , 1989, IEEE Trans. Inf. Theory.

[13]  Donald E. Knuth,et al.  Dynamic Huffman Coding , 1985, J. Algorithms.

[14]  Hidetoshi Yokoo,et al.  An improvement of dynamic Huffman coding with a simple repetition finder , 1991, IEEE Trans. Commun..

[15]  L. Goddard Information Theory , 1962, Nature.

[16]  Frans M. J. Willems,et al.  Weighted coding methods for binary piecewise memoryless sources , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[17]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[18]  Jacob Ziv,et al.  On classification with empirically observed statistics and universal data compression , 1988, IEEE Trans. Inf. Theory.

[19]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[20]  Marcelo J. Weinberger,et al.  Upper bounds on the probability of sequences emitted by finite-state sources and on the redundancy of the Lempel-Ziv algorithm , 1992, IEEE Trans. Inf. Theory.

[21]  Guy Louchard,et al.  On the average redundancy rate of the Lempel-Ziv code , 1997, IEEE Trans. Inf. Theory.

[22]  A. D. Wyner,et al.  The sliding-window Lempel-Ziv algorithm is asymptotically optimal , 1994, Proc. IEEE.

[23]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[24]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[25]  Jeffrey Scott Vitter,et al.  Design and analysis of dynamic Huffman codes , 1987, JACM.

[26]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[27]  Serap A. Savari,et al.  Redundancy of the Lempel-Ziv incremental parsing rule , 1997, IEEE Trans. Inf. Theory.