Remote sensing of optical depth of aerosols and clouds related to air traffic
暂无分享,去创建一个
[1] A. T. Young. Revised depolarization corrections for atmospheric extinction. , 1980, Applied optics.
[2] K. Liou. Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .
[3] Invertierung der Lidarsignale von Cirrus und Kondensstreifen unter Nutzung des Schattenwurfes , 1991 .
[4] K. Sassen. Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications , 1992, Science.
[5] On the effect of emissions from aircraft engines on the state of the atmosphere , 1994 .
[6] Ground-based mobile scanning LIDAR for remote sensing of contrails , 1994 .
[7] S. Bakan,et al. Contrail frequency over Europe from NOAA-satellite images , 1994 .
[8] L R Bissonnette,et al. Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements. , 1995, Applied optics.
[9] H. Jäger,et al. Contrail observations by ground‐based scanning lidar: Cross‐sectional growth , 1995 .
[10] V. Freudenthaler,et al. Optical parameters of contrails from lidar measurements : Linear depolarization , 1996 .
[11] On the Climatic Impact of Contrails , 1997 .
[12] Parameterization of Contrails in a Comprehensive Climate Model , 1997 .
[13] Terry Deshler,et al. Five Years of Lidar Observations of the Pinatubo Eruption Cloud , 1997 .
[14] Contrail Observations from Space Using NOAA-AVHRR Data , 1997 .