On the b-coloring of P4-tidy graphs

A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by @g"b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every t=@g(G),...,@g"b(G), and it is b-monotonic if @g"b(H"1)>=@g"b(H"2) for every induced subgraph H"1 of G, and every induced subgraph H"2 of H"1. In this work, we prove that P"4-tidy graphs (a generalization of many classes of graphs with few induced P"4s) are b-continuous and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute theb-chromatic number for this class of graphs.

[1]  Brice Effantin,et al.  The b-chromatic number of some power graphs , 2003 .

[2]  Mario Valencia-Pabon,et al.  On Approximating the B-Chromatic Number , 2003, Discret. Appl. Math..

[3]  Chính T. Hoàng,et al.  A Characterization of b‐Perfect Graphs , 2010, J. Graph Theory.

[4]  Zsolt Tuza,et al.  On the b-Chromatic Number of Graphs , 2002, WG.

[5]  Sandi Klavzar,et al.  The b-Chromatic Number of Cubic Graphs , 2010, Graphs Comb..

[6]  S. Olariu,et al.  A New Class of Brittle Graphs , 1989 .

[7]  Stephan Olariu,et al.  P-Components and the Homogeneous Decomposition of Graphs , 1995, SIAM J. Discret. Math..

[8]  Manouchehr Zaker,et al.  Bounds for the b-chromatic number of some families of graphs , 2006, Discret. Math..

[9]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[10]  Vassilis Giakoumakis,et al.  On P 4 -tidy graphs , 1997 .

[11]  Javier Marenco,et al.  On the b-Coloring of Cographs and P4-Sparse Graphs , 2009, Graphs Comb..

[12]  Hamamache Kheddouci,et al.  The b-chromatic number of power graphs , 2003, Discret. Math. Theor. Comput. Sci..

[13]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[14]  Stephan Olariu,et al.  On the Structure of Graphs with Few P4s , 1998, Discret. Appl. Math..

[15]  Stephan Olariu,et al.  On the p-connectedness of Graphs - A Survey , 1999, Discret. Appl. Math..

[16]  Chính T. Hoàng,et al.  On minimally b-imperfect graphs , 2009, Discret. Appl. Math..

[17]  S. Olariu,et al.  On a unique tree representation for P4-extendible graphs , 1991, Discret. Appl. Math..

[18]  S. Olariu,et al.  P4‐Reducible Graphs—Class of Uniquely Tree‐Representable Graphs , 1989 .

[19]  Chính T. Hoàng,et al.  On the b-dominating coloring of graphs , 2005, Discret. Appl. Math..