Krylov subspace methods for the Dirac equation
暂无分享,去创建一个
[1] D. Eng,et al. \computing Eigenvalues of Very Large Symmetric Matrices { an Implementation of a Lanczos Algorithm with No Reorthogonalization," , 1996 .
[2] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[3] John C. Light,et al. On the Exponential Form of Time‐Displacement Operators in Quantum Mechanics , 1966 .
[4] J. Light,et al. Generalized discrete variable approximation in quantum mechanics , 1985 .
[5] Franz Gross,et al. Relativistic quantum mechanics and field theory , 1993 .
[6] Christoph H. Keitel,et al. A real space split operator method for the Klein-Gordon equation , 2009, J. Comput. Phys..
[7] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[8] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[9] V. Szalay. Discrete variable representations of differential operators , 1993 .
[10] L. Brey,et al. Electronic states of graphene nanoribbons studied with the Dirac equation , 2006 .
[11] K. Z. Hatsagortsyan,et al. Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.
[12] Barry I. Schneider,et al. ALTDSE: An Arnoldi-Lanczos program to solve the time-dependent Schrödinger equation , 2009, Comput. Phys. Commun..
[13] R. Haydock. The recursive solution of the Schrödinger equation , 1980 .
[14] Werner Scheid,et al. FINITE ELEMENT FORMULATION OF THE DIRAC EQUATION AND THE PROBLEM OF FERMION DOUBLING , 1998 .
[15] H. Bethe,et al. Theory of Atomic Collisions , 1951, Nature.
[16] H. Bauke,et al. The Kapitza-Dirac effect in the relativistic regime , 2013, 1305.5507.
[17] T. Park,et al. Unitary quantum time evolution by iterative Lanczos reduction , 1986 .
[18] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[19] Suk-Geun Hwang,et al. Cauchy's Interlace Theorem for Eigenvalues of Hermitian Matrices , 2004, Am. Math. Mon..
[20] J. Kamiński,et al. Fundamental processes of quantum electrodynamics in laser fields of relativistic power , 2009 .
[21] D. Gitman,et al. Exact solutions of relativistic wave equations , 1990 .
[22] Guido R. Mocken,et al. Quantum dynamics of relativistic electrons , 2004 .
[23] M. Huber,et al. Relativistic entanglement of two massive particles , 2009, 0912.4863.
[24] Claude Leforestier,et al. A comparison of different propagation schemes for the time dependent Schro¨dinger equation , 1991 .
[25] Christoph H. Keitel,et al. Accelerating the Fourier split operator method via graphics processing units , 2010, Comput. Phys. Commun..
[26] Rainer Grobe,et al. Numerical approach to solve the time-dependent Dirac equation , 1999 .
[27] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[28] Walter Pötz,et al. Staggered grid leap-frog scheme for the (2+1) D Dirac equation , 2013, Comput. Phys. Commun..
[29] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[30] G. L. Payne,et al. Relativistic Quantum Mechanics , 2007 .
[31] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[32] M. Ancona,et al. Cluster computing , 2003, Eleventh Euromicro Conference on Parallel, Distributed and Network-Based Processing, 2003. Proceedings..
[33] Vlatko Vedral,et al. Physical interpretation of the Wigner rotations and its implications for relativistic quantum information , 2011, 1111.7145.
[34] Guido R. Mocken,et al. FFT-split-operator code for solving the Dirac equation in 2+1 dimensions , 2008, Comput. Phys. Commun..
[35] R. Blatt,et al. Quantum simulation of the Dirac equation , 2009, Nature.
[36] C. Vafa,et al. Advanced Quantum Mechanics , 2012 .
[37] André D. Bandrauk,et al. Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling , 2011, Comput. Phys. Commun..
[38] Nicholas Wilt,et al. The CUDA Handbook: A Comprehensive Guide to GPU Programming , 2013 .
[39] Daniel R. Terno,et al. Quantum Information and Relativity Theory , 2002, quant-ph/0212023.
[40] André D. Bandrauk,et al. A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry , 2013, J. Comput. Phys..
[41] Eva Lindroth,et al. Solution of the Dirac equation for hydrogenlike systems exposed to intense electromagnetic pulses , 2009 .
[42] P. Strange. Relativistic Quantum Mechanics: With Applications in Condensed Matter and Atomic Physics , 1998 .
[43] Christoph H. Keitel,et al. Relativistic high-power laser–matter interactions , 2006 .
[44] S. Blanes,et al. The Magnus expansion and some of its applications , 2008, 0810.5488.
[45] M. Feit,et al. Solution of the Schrödinger equation by a spectral method , 1982 .
[46] S. X. Hu,et al. Parallel solver for the time-dependent linear and nonlinear Schrödinger equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[47] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[48] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[49] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[50] Sidney D. Drell,et al. Relativistic Quantum Mechanics , 1965 .
[51] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .