Optimal Designs for Regression Models With a Constant Coefficient of Variation

In this article we consider the problem of constructing optimal designs for models with a constant coefficient of variation. We explore the special structure of the information matrix in these models and derive a characterization of optimal designs in the sense of Kiefer and Wolfowitz (1960). Besides locally optimal designs, Bayesian and standardized minimax optimal designs are also considered. Particular attention is spent on the problem of constructing D-optimal designs. The results are illustrated in several examples where optimal designs are calculated analytically and numerically.

[1]  Holger Dette,et al.  Optimal Designs for Dose–Response Models With Restricted Design Spaces , 2006 .

[2]  Holger Dette,et al.  Optimal Designs for Dose-Finding Studies , 2008 .

[3]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[4]  H. Dette,et al.  Efficient Design of Experiment for Exponential Regression Models , 2004 .

[5]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[6]  Holger Dette,et al.  Maximin and Bayesian Optimal Designs for Regression Models , 2003 .

[7]  D. Wiens,et al.  Integer-Valued, Minimax Robust Designs for Estimation and Extrapolation in Heteroscedastic, Approximately Linear Models , 2000 .

[8]  Paul G. Hoel,et al.  Efficiency Problems in Polynomial Estimation , 1958 .

[9]  David A. Ratkowsky,et al.  Handbook of nonlinear regression models , 1990 .

[10]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[11]  David Firth,et al.  Multiplicative Errors: Log‐Normal or Gamma? , 1988 .

[12]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[13]  Weng Kee Wong,et al.  Design issues for the Michaelis-Menten model. , 2002, Journal of theoretical biology.

[14]  Holger Dette,et al.  Maximin efficient design of experiment for exponential regression models , 2006 .

[15]  Linda M. Haines,et al.  Bayesian D-optimal designs for the exponential growth model , 1995 .

[16]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[17]  J France,et al.  A generalized Michaelis-Menten equation for the analysis of growth. , 2000, Journal of animal science.

[18]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[19]  F. Pukelsheim,et al.  Efficient rounding of approximate designs , 1992 .

[20]  Hartmut Derendorf,et al.  Population pharmacodynamic model of bronchodilator response to inhaled albuterol in children and adults with asthma. , 2008, Chest.

[21]  Y. Chen,et al.  Ratio-based decisions and the quantitative analysis of cDNA microarray images. , 1997, Journal of biomedical optics.

[22]  John F. Kennedy,et al.  Fundamentals of enzyme kinetics (revised edition) , 1997 .

[23]  P. Sprent,et al.  Nonlinear Regression Modeling-A Unified Practical Approach. , 1985 .

[24]  Drew Seils,et al.  Optimal design , 2007 .

[25]  Vikram Sinha,et al.  Pharmacokinetics/pharmacodynamics and the stages of drug development: Role of modeling and simulation , 2005, The AAPS Journal.

[26]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[27]  T. Holland-Letz,et al.  A geometric characterization of c-optimal designs for heteroscedastic regression , 2009, 0911.3801.

[28]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[29]  Federico Innocenti,et al.  Pharmacokinetics and pharmacodynamics of combination chemotherapy with paclitaxel and epirubicin in breast cancer patients. , 2002, British journal of clinical pharmacology.

[30]  Linda M. Haines,et al.  A Geometric Approach to Optimal Design for One‐Parameter Non‐Linear Models , 1995 .

[31]  Paola Sebastiani,et al.  D-optimal designs for generalised linear models with variance proportional to the square of the mean , 1994 .

[32]  Holger Dette,et al.  OPTIMAL BAYESIAN DESIGNS FOR MODELS WITH PARTIALLY SPECIFIED HETEROSCEDASTIC STRUCTURE , 1996 .

[33]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[34]  Holger Dette,et al.  A note on Bayesian c- and D-optimal designs in nonlinear regression models , 1996 .

[35]  Anthony C. Atkinson,et al.  D-Optimum Designs for Heteroscedastic Linear Models , 1995 .

[36]  Holger Dette,et al.  Designing Experiments with Respect to ‘Standardized’ Optimality Criteria , 1997 .

[37]  Linda M. Haines,et al.  Optimal design for nonlinear regression models , 1993 .

[38]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[39]  Anthony C. Atkinson,et al.  Examples of the use of an equivalence theorem in constructing optimum experimental designs for random-effects nonlinear regression models , 2008 .

[40]  Holger Dette,et al.  Optimal designs for the emax, log-linear and exponential models , 2010 .

[41]  Søren Johansen Functional Relations, Random Coefficients, and Nonlinear Regression with Application to Kinetic Data , 1984 .

[42]  Holger Dette,et al.  Bayesian D-optimal designs for exponential regression models , 1997 .

[43]  Holger Dette,et al.  Optimal designs for a class of nonlinear regression models , 2002 .

[44]  Kathryn Chaloner,et al.  D- and c-optimal designs for exponential regression models used in viral dynamics and other applications , 2003 .