The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNARE and Mediate Autophagosome-Vacuole Fusion

[1]  Jing Zhang,et al.  ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes , 2015, Nature.

[2]  John K. Kim,et al.  Article Transcriptional Regulation by Pho23 Modulates the Frequency of Autophagosome Formation , 2022 .

[3]  G. Juhász,et al.  Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila , 2014, Molecular biology of the cell.

[4]  B. Satiat-Jeunemaitre,et al.  The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. , 2014, Developmental cell.

[5]  Leon H. Chew,et al.  Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation , 2013, Proceedings of the National Academy of Sciences.

[6]  D. Klionsky,et al.  The Mechanism and Physiological Function of Macroautophagy , 2013, Journal of Innate Immunity.

[7]  G. Juhász,et al.  Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila , 2013, The Journal of cell biology.

[8]  James H. Hurley,et al.  Architecture of the Atg17 Complex as a Scaffold for Autophagosome Biogenesis , 2012, Cell.

[9]  N. Mizushima,et al.  The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes , 2012, Cell.

[10]  D. Klionsky,et al.  Phosphatidylinositol-3-Phosphate Clearance Plays a Key Role in Autophagosome Completion , 2012, Current Biology.

[11]  D. Klionsky,et al.  Proteinase protection of prApe1 as a tool to monitor Cvt vesicle/autophagosome biogenesis , 2012, Autophagy.

[12]  D. Klionsky,et al.  The role of autophagy in Parkinson's disease. , 2012, Cold Spring Harbor perspectives in medicine.

[13]  Current Biology , 2012, Current Biology.

[14]  R. Leapman,et al.  Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging. , 2011, Journal of structural biology.

[15]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[16]  H. Arlt,et al.  The Rab GTPase Ypt7 is linked to retromer-mediated receptor recycling and fusion at the yeast late endosome , 2010, Journal of Cell Science.

[17]  C. Ostrowicz,et al.  The Mon1-Ccz1 Complex Is the GEF of the Late Endosomal Rab7 Homolog Ypt7 , 2010, Current Biology.

[18]  D. Klionsky,et al.  The Cvt pathway as a model for selective autophagy , 2010, FEBS letters.

[19]  Daniel J Klionsky,et al.  Mammalian autophagy: core molecular machinery and signaling regulation. , 2010, Current opinion in cell biology.

[20]  T. Noda,et al.  Combinational Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor Proteins VAMP8 and Vti1b Mediate Fusion of Antimicrobial and Canonical Autophagosomes with Lysosomes , 2010, Molecular biology of the cell.

[21]  細川 奈生 Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy , 2010 .

[22]  M. B. Mestre,et al.  TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. , 2009, Biochimica et biophysica acta.

[23]  D. Klionsky,et al.  A genomic screen for yeast mutants defective in selective mitochondria autophagy. , 2009, Molecular biology of the cell.

[24]  E. Chan,et al.  mTORC1 Phosphorylates the ULK1-mAtg13-FIP200 Autophagy Regulatory Complex , 2009, Science Signaling.

[25]  D. Klionsky,et al.  A multiple ATG gene knockout strain for yeast two-hybrid analysis , 2009, Autophagy.

[26]  V. Deretic,et al.  Autophagy, immunity, and microbial adaptations. , 2009, Cell host & microbe.

[27]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[28]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[29]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[30]  D. Klionsky,et al.  The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. , 2007, Molecular biology of the cell.

[31]  D. Klionsky,et al.  Autophagosome formation: core machinery and adaptations , 2007, Nature Cell Biology.

[32]  W. Huh,et al.  Bimolecular fluorescence complementation analysis system for in vivo detection of protein–protein interaction in Saccharomyces cerevisiae , 2007, Yeast.

[33]  Y. Ohsumi,et al.  Hierarchy of Atg proteins in pre‐autophagosomal structure organization , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[34]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[35]  D. Klionsky,et al.  Atg17 regulates the magnitude of the autophagic response. , 2005, Molecular biology of the cell.

[36]  Yoshiaki Kamada,et al.  Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. , 2005, Molecular biology of the cell.

[37]  Yoshiaki Kamada,et al.  Atg 17 Functions in Cooperation with Atg 1 and Atg 13 in Yeast Autophagy , 2005 .

[38]  D. Klionsky,et al.  Cargo Proteins Facilitate the Formation of Transport Vesicles in the Cytoplasm to Vacuole Targeting Pathway* , 2004, Journal of Biological Chemistry.

[39]  M. Colombo,et al.  Rab7 is required for the normal progression of the autophagic pathway in mammalian cells , 2004, Journal of Cell Science.

[40]  D. Klionsky,et al.  The Ccz1-Mon1 Protein Complex Is Required for the Late Step of Multiple Vacuole Delivery Pathways* , 2002, The Journal of Biological Chemistry.

[41]  A Kihara,et al.  Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. , 2001, Molecular biology of the cell.

[42]  S. Emr,et al.  Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes , 2001, Nature Cell Biology.

[43]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[44]  T. Stevens,et al.  The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. , 1999, Molecular biology of the cell.

[45]  D. Thiele,et al.  Copper ion inducible and repressible promoter systems in yeast. , 1999, Methods in enzymology.

[46]  W. Wickner,et al.  Vam7p, a vacuolar SNAP‐25 homolog, is required for SNARE complex integrity and vacuole docking and fusion , 1998, The EMBO journal.

[47]  S. Emr,et al.  A Multispecificity Syntaxin Homologue, Vam3p, Essential for Autophagic and Biosynthetic Protein Transport to the Vacuole , 1997, The Journal of cell biology.

[48]  E. Craig,et al.  Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. , 1996, Genetics.

[49]  D. Klionsky,et al.  Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway , 1995, The Journal of cell biology.

[50]  T. Noda,et al.  Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. , 1995, Biochemical and biophysical research communications.

[51]  S. Emr,et al.  A new class of lysosomal/vacuolar protein sorting signals. , 1990, The Journal of biological chemistry.

[52]  S. Emr,et al.  Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. , 1989, The EMBO journal.