Cell population heterogeneity during growth of Bacillus subtilis.

We have discovered that cells of Bacillus subtilis at the mid-exponential phase of growth are a mixed population of two strikingly different cell types. One type is single swimming cells (or cell doublets) in which the transcription factor for motility, sigma(D), is active (sigma(D) ON). The other type is long chains of sessile cells in which sigma(D) is inactive (sigma(D) OFF). The population is strongly biased toward sigma(D)-ON cells by the action of a novel regulatory protein called SwrA. SwrA stimulates the transcription of a large operon (the flagellum/chemotaxis operon), which includes the genes for sigma(D) and an activator of sigma(D)-directed gene expression, SwrB. Cell population heterogeneity could enable B. subtilis to exploit its present location through the production of sessile cells as well as to explore new environmental niches through the generation of nomadic cells.

[1]  R. Losick,et al.  Cannibalism by Sporulating Bacteria , 2003, Science.

[2]  G. Ordal,et al.  Transcriptional organization of a cloned chemotaxis locus of Bacillus subtilis , 1990, Journal of bacteriology.

[3]  Masaya Fujita,et al.  High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis , 2005, Journal of bacteriology.

[4]  A. Albertini,et al.  The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide , 1991, Journal of bacteriology.

[5]  W. E. Inniss,et al.  A rapid, simple method for staining bacterial flagella. , 1977, Canadian journal of microbiology.

[6]  R. Losick,et al.  A master regulator for biofilm formation by Bacillus subtilis , 2004, Molecular microbiology.

[7]  D. Dubnau,et al.  Bistability in the Bacillus subtilis K‐state (competence) system requires a positive feedback loop , 2005, Molecular microbiology.

[8]  K. Hughes,et al.  Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. , 1993, Science.

[9]  M. Pagni,et al.  Bacillus subtilis 168 gene lytF encodes a γ-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD , 1999 .

[10]  D. Karamata,et al.  The gene of the N‐acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis , 1994, Molecular microbiology.

[11]  J. Fein Possible involvement of bacterial autolytic enzymes in flagellar morphogenesis , 1979, Journal of bacteriology.

[12]  A. Galizzi,et al.  Role of FlgM in sigma D-dependent gene expression in Bacillus subtilis , 1996, Journal of bacteriology.

[13]  M. Iwakura,et al.  Purification and characterization of the flagellar hook–basal body complex of Bacillus subtilis , 1997, Molecular microbiology.

[14]  M. Chamberlin,et al.  Characterization of the sigD transcription unit of Bacillus subtilis , 1994, Journal of bacteriology.

[15]  Sierd Bron,et al.  Stripping Bacillus: ComK auto‐stimulation is responsible for the bistable response in competence development , 2005, Molecular microbiology.

[16]  Y. Fujita,et al.  Systematic analysis of SigD-regulated genes in Bacillus subtilis by DNA microarray and Northern blotting analyses. , 2004, Gene.

[17]  I. Henderson,et al.  Molecular switches — the ON and OFF of bacterial phase variation , 1999, Molecular microbiology.

[18]  M. Chamberlin,et al.  Identification of flagellar synthesis regulatory and structural genes in a sigma D-dependent operon of Bacillus subtilis , 1994, Journal of bacteriology.

[19]  R. Losick,et al.  Swarming motility in undomesticated Bacillus subtilis , 2003, Molecular microbiology.

[20]  J. Helmann,et al.  The Bacillus subtilis sigma D-dependent operon encoding the flagellar proteins FliD, FliS, and FliT , 1994, Journal of bacteriology.

[21]  M. Fox,et al.  Fractionation of Transformable Bacteria from Competent Cultures of Bacillus subtilis on Renografin Gradients , 1968, Journal of bacteriology.

[22]  A. Grossman,et al.  Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation , 1994, Journal of bacteriology.

[23]  M. Chamberlin,et al.  The Bacillus subtilis flagellin gene (hag) is transcribed by the sigma 28 form of RNA polymerase , 1989, Journal of bacteriology.

[24]  E. Freese,et al.  Motility of Bacillus subtilis during growth and sporulation , 1975, Journal of bacteriology.

[25]  K. Kutsukake Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium , 1994, Molecular and General Genetics MGG.

[26]  K. Hughes,et al.  Completion of the hook–basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription , 2000, Molecular microbiology.

[27]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Karamata,et al.  Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. , 1992, Journal of general microbiology.

[29]  S. Foster,et al.  The role of autolysins during vegetative growth of Bacillus subtilis 168. , 1998, Microbiology.

[30]  Oscar P Kuipers,et al.  Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis , 2005, Molecular microbiology.

[31]  G. Ordal,et al.  Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis: sequences of the flgB, flgC, flgG, fliE and fliF genes. , 1991, Gene.

[32]  D. Dubnau,et al.  A ComGA‐dependent checkpoint limits growth during the escape from competence , 2001, Molecular microbiology.

[33]  G. Ordal,et al.  The Last Gene of the fla/che Operon in Bacillus subtilis, ylxL, Is Required for Maximal σD Function , 2004, Journal of bacteriology.

[34]  L. Márquez-Magaña,et al.  Dual Promoters Are Responsible for Transcription Initiation of the fla/che Operon in Bacillus subtilis , 1998, Journal of bacteriology.

[35]  H. M. Parker,et al.  Studies of sigma D-dependent functions in Bacillus subtilis , 1990, Journal of bacteriology.

[36]  G. Amati,et al.  DegU-P Represses Expression of the Motility fla-che Operon in Bacillus subtilis , 2004, Journal of bacteriology.

[37]  Cinzia Calvio,et al.  Swarming Differentiation and Swimming Motility in Bacillus subtilis Are Controlled by swrA, a Newly Identified Dicistronic Operon , 2005, Journal of bacteriology.

[38]  J. West,et al.  Relative Roles of the fla/chePA, PD-3, and PsigDPromoters in Regulating Motility and sigD Expression inBacillus subtilis , 2000, Journal of bacteriology.

[39]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[40]  M. Simon,et al.  Synthesis of Bacterial Flagella II. PBSl Transduction of Flagella-specific Markers in Bacillus subtilis , 1969, Journal of bacteriology.

[41]  R. Losick,et al.  Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility , 2004, Molecular microbiology.

[42]  M. Chamberlin,et al.  Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene , 1988, Journal of bacteriology.

[43]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[44]  Patrick Eichenberger,et al.  Genome-Wide Analysis of the Stationary-Phase Sigma Factor (Sigma-H) Regulon of Bacillus subtilis , 2002, Journal of bacteriology.

[45]  Michael T. Laub,et al.  Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus , 2004, Nature Reviews Microbiology.

[46]  A. Galizzi,et al.  Surface-Associated Flagellum Formation and Swarming Differentiation in Bacillus subtilis Are Controlled by the ifm Locus , 2004, Journal of bacteriology.

[47]  K. Lewis,et al.  Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli , 2004, Journal of bacteriology.

[48]  E. Nester,et al.  Purification of Competent Cells in the Bacillus subtilis Transformation System , 1968, Journal of bacteriology.

[49]  Dependence of Local Cell Density on Concentric Ring Colony Formation by Bacterial Species Bacillus subtilis , 2004 .

[50]  Y. Komeda,et al.  Transcriptional control of flagellar genes in Escherichia coli K-12 , 1986, Journal of bacteriology.

[51]  S. Ehrlich,et al.  Genes Involved in Formation of Structured Multicellular Communities by Bacillus subtilis , 2004, Journal of bacteriology.