Electron cross-field transport in a miniaturized cylindrical Hall thruster

Summary form only given. Conventional annular Hall thrusters become inefficient when scaled to low power. Their lifetime decreases significantly due to the channel wall erosion. Cylindrical Hall thrusters that have lower surface-to-volume ratio and, thus, seem to be more promising for scaling down, exhibit performance comparable with conventional annular Hall thrusters of the similar size. Efficiency of a Hall thruster decreases with increasing electron current. Understanding of the mechanisms of electron transport in the discharge is, therefore, essential for the development of higher efficiency thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. It is shown that in order to explain the observed discharge current, the electron anomalous collision frequency nuB has to be on the order of the Bohm value, nuBapomegao/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant

[1]  E. Choueiri Plasma oscillations in Hall thrusters , 2001 .

[2]  J. Adam,et al.  Study of stationary plasma thrusters using two-dimensional fully kinetic simulations , 2004 .

[3]  Edgar Y. Choueiri,et al.  Pulsed thrust measurements using laser interferometry , 1997 .

[4]  Electron Transport and Ion Acceleration in a Low-Power Cylindrical Hall Thruster , 2004 .

[5]  N. Fisch,et al.  Electron-wall Interaction in Hall Thrusters , 2005 .

[6]  Kurt A. Polzin,et al.  Performance of a Low-Power Cylindrical Hall Thruster , 2007 .

[7]  R. K. Wakerling,et al.  The characteristics of electrical discharges in magnetic fields , 1949 .

[8]  N. Fisch,et al.  Parametric investigations of a nonconventional Hall thruster , 2001 .

[9]  Artem Smirnov,et al.  Enhanced ionization in the cylindrical Hall thruster , 2002 .

[10]  N. Fisch,et al.  Experimental studies of high-frequency azimuthal waves in Hall thrusters , 2004 .

[11]  N. Fisch,et al.  Plasma measurements in a 100 W cylindrical Hall thruster , 2004 .

[12]  Yevgeny Raitses,et al.  Parametric investigation of miniaturized cylindrical and annular Hall thrusters , 2001 .

[13]  John Michael Fife,et al.  Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters , 1998 .

[14]  N. Meezan,et al.  Kinetic study of wall collisions in a coaxial Hall discharge. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  A. Smolyakov,et al.  Kinetic simulation of secondary electron emission effects in Hall thrusters , 2006 .

[16]  K. Makowski,et al.  Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity , 2003 .

[17]  T. Gyergyek,et al.  Interpretation of a Planar Langmuir Probe Current — Voltage Characteristic in a Strong Magnetic Field , 1994 .

[18]  E. Ahedo,et al.  Effects of the radial plasma-wall interaction on the Hall thruster discharge , 2003 .

[19]  E. Choueiri Fundamental difference between the two Hall thruster variants , 2001 .

[20]  L. Garrigues,et al.  Critical assessment of a two-dimensional hybrid Hall thruster model: Comparisons with experiments , 2004 .

[21]  Nathaniel J. Fisch,et al.  The Effect of Magnetic Field on the Performance of Low-Power Cylindrical Hall Thrusters , 2005 .

[22]  J. Boeuf,et al.  A Monte Carlo analysis of an electron swarm in a nonuniform field: the cathode region of a glow discharge in helium , 1982 .

[23]  N. Meezan,et al.  Anomalous electron mobility in a coaxial Hall discharge plasma. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  N. Fisch,et al.  Space charge saturated sheath regime and electron temperature saturation in Hall thrusters , 2005 .

[25]  James Joseph Szabo,et al.  Fully kinetic numerical modeling of a plasma thruster , 2001 .

[26]  G. Janes,et al.  Anomalous Electron Diffusion and Ion Acceleration in a Low‐Density Plasma , 1966 .

[27]  A. Gany,et al.  Analysis of the steady-state axial flow in the Hall thruster , 2002 .

[28]  Yevgeny Raitses,et al.  Anode sheath in Hall thrusters , 2002 .

[29]  Yevgeny Raitses,et al.  Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster , 2004 .

[30]  A. Morozov,et al.  Theory of the near-wall conductivity , 2001 .

[31]  M. Bacal,et al.  On the electron energy distribution function in a Hall-type thruster , 1999 .

[32]  M. Keidar,et al.  Plasma flow and plasma–wall transition in Hall thruster channel , 2001 .

[33]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[34]  A. Fruchtman Limits on the efficiency of several electric thruster configurations , 2003 .